organotin hydrides increases with increasing numbers of organic groups attached to the tin atom.¹⁵ The halostannanes SnH_3X , X = Cl, Br, or I, however, are much less stable than SnH_4 and decompose upon sublimation at -35 °C.¹⁶ Therefore, it was of some interest to attempt the preparation of CF₃SnH₃ as the trifluoromethyl group can be likened to an organic group since the linkage is through carbon, yet the ligand is very electronegative (more electronegative than Cl^{17}). The experimental evidence indicates that a volatile tin compound is formed, a compound that decomposes faster than SnH₄ and has a chemical shift more deshielded than that of $ClSnH_3$ ($\delta(SnH_3Cl)$ 6.93¹⁶). Taken with the mass spectral data, which indicate $CF_3SnH_n^+$, $SnFH_n^+$, and SnH_n^+ , these results argue strongly for the formation of CF₃SnH₃, but the compound is clearly less stable than stannane. Presumably the fact that the (trifluoromethyl)germanium hydrides are easily synthesized and stable for weeks at ambient temperatures^{10,18} while the tin-containing analogues are not is a reflection of the relative electronegativities of the two central elements.

- (15) R. C. Poller, "Chemistry of Organotin Compounds", Logos Press, London, 1970.
- (16) J. M. Bellama and R. A. Gsell, Inorg. Nucl. Chem. Lett., 7, 365 (1971).
- (17) J. E. Huhcey, J. Phys. Chem., 69, 3284 (1965).
 (18) L. C. Krisher, W. A. Watson, and J. A. Morrison, J. Chem. Phys., 61, 3429 (1974).

In summary the sealed-tube reactions between SnBr₄ and $(CF_3)_2$ Hg are a very convenient method of preparing the (trifluoromethyl)tin bromides CF₃SnBr₃ and (CF₃)₂SnBr₂ if the appropriate times and temperatures are used. However, outside of the relatively narrow temperature ranges established here the yields drop dramatically. Further substitution of trifluoromethyl groups is also indicated, but the trisubstituted compound decomposes almost immediately. The reaction of the bromides with stoichiometric amounts of CH₃Li or $(CH_3)_2Cd$ converts these compounds to the mixed methyl-(trifluoromethyl)tin compounds virtually quantitatively. On the basis of the yields and availability of the reagents, the present preparation of the alkyl(perfluoromethyl)tin compounds is the most convenient synthesis known. (Trifluoromethyl)stannane appears to be much less stable than SnH₄, as are the stannyl halides.

Acknowledgment. The financial contributions of the Research Corp. and the University of Illinois Research Board and the aid of a Faculty Summer Fellowship are gratefully acknowledged. Some of the preliminary experiments were performed by Steven Mendak.

Registry No. CF₃SnBr₃, 65094-19-1; (CF₃)₂SnBr₂, 65094-20-4; CF₃Sn(CH₃)₃, 754-25-6; (CF₃)₂Sn(CH₃)₂, 65059-36-1; Sn(CH₃)₄, 594-27-4; CF₃SnBr(CH₃)₂, 72244-71-4; CF₃SnBr₂CH₃, 72251-81-1; (CF₃)₂H₉, 371-76-6; SnBr₄, 7789-67-5; (CH₃)₂Cd, 506-82-1; CH₃Li, 917-54-4; CF₃SnH₃, 72244-72-5; SnH₄, 2406-52-2.

> Contribution from the Department of Chemistry, Kansas State University, Manhattan, Kansas 66506

Synthesis and Properties of Chlorine(I) and Bromine(I) Trifluoromethanesulfonates and Raman Spectra of CF_3SO_2X (X = F, OH, OCl)

YUTAKA KATSUHARA, ROBERT M. HAMMAKER, and DARRYL D. DESMARTEAU*1.2

Received July 9, 1979

The synthesis and characterization of the new hypohalites CF₃SO₃Cl and CF₃SO₃Br are described. Both compounds are thermally unstable at 22 °C, decomposing to CF₃Cl and SO₃ for the hypochlorite and CF₃SO₃CF₃, CF₃SO₂OSO₂OCF₄, SO₃ and Br₂ for the hypobromite. The hypochlorite is prepared by reaction of CF₃SO₃H with ClF and the hypobromite by reaction of CF₃SO₃Cl with bromine. The low-temperature Raman spectrum of CF₃SO₃Cl suggests C₁ symmetry and assignments of 20 of the expected 21 fundamentals are given. These assignments were aided by an analysis of the Raman spectra of CF₃SO₂F and CF₃SO₂OH, which are reported for the first time.

Introduction

Halogen derivatives of strong oxyacids contain the halogen in a formal positive oxidation state.^{3,4} These +1 compounds are then very useful sources of the electrophiles Cl⁺, Br⁺, and I⁺. The potential of such compounds is apparent by considering one of the better characterized examples, BrOSO₂F. This reactive compound undergoes electrophilic addition to olefins, substitutive electrophilic dehalogenation reactions with various chlorides and bromides, and one-electron oxidation by Br⁺ with metals and serves as a source of Br⁺ in the formation of polyhalogen cations.³

$$\begin{array}{l} BrOSO_2F + CH_2CF_2 \rightarrow BrCH_2CF_2OSO_2F\\ 2BrOSO_2F + FCCl_3 \rightarrow 2BrCl + FCCl(OSO_2F)_2\\ 3BrOSO_2F + Au \rightarrow Au(SO_3F)_3 + \frac{3}{2}Br_2\\ & \\ SbF_4 \end{array}$$

$$BrOSO_2F + Cl_2 \rightarrow BrCl_2^+ + FSO_3^-$$

Clearly any new compound with properties similar to those

- (2)
- To whom correspondence should be addressed. Alfred P. Sloan Fellow, 1975-1977. Aubke, F.; DesMarteau, D. D. Fluorine Chem. Rev. 1977, 8, 73. (3)
- Schack, C. J.; Christe, K. O. Isr. J. Chem. 1978, 17, 20.

of BrOSO₂F would be immediately useful in synthesis.

Halogen(I) derivatives of several strong monoprotic acids have been prepared. These include HOSO₂F (Cl,⁵ Br,⁶ I⁷), HOClO₃ (Cl,⁸ Br⁹), HOSeF₅ (Cl, Br, I¹⁰), HOTeF₅ (Cl, Br, I)¹¹ and HONO₂ (Cl,¹² Br¹³). Not all of these compounds have good thermal stability and none have been investigated to the same extent as BrOSO₂F. One very strong acid, for which only the iodine compound is known, is CF₃SO₂OH.¹⁴ This acid and its organic derivatives (triflates) have been extensively investigated since its discovery in 1954.15,16

- Gilbreath, W. P.; Cady, G. H. Inorg. Chem. 1963, 2, 496. Schack, C. J.; Wilson, R. D. Ibid. 1970, 9, 311. Hardin, C. V.; Ratcliffe, C. T.; Anderson, L. R.; Fox, W. B. Ibid. 1970, 9, 1938. Roberts, J. E.; Cady, G. H. J. Am. Chem. Soc. 1960, 82, 352. Aubke, F.; Gillespie, R. J. Inorg. Chem. 1968, 7, 599. Aubke, F.; Cady, G. H. Inorg. Chem. 1965, 4, 269. Schack, C. J.; Pilipovich, D. Inorg. Chem. 1970, 9, 1387. Schack, C. J.; Christe, K. O.; Pilipovich, D.; Wilson, R. D. Inorg. Chem. 1971, 0, 1078. (5)
- (6)
- (9)
- 1971, 10, 1078. (10)
- Seppelt, K. Chem. Ber. 1973, 106, 157. (11)
- Seppelt, K. Chem. Ber. 1973, 106, 1920. Schack, C. J. Inorg. Chem. 1967, 6, 1938. (12)
- (13) Schmeisser, M.; Talinger, L. Chem. Ber. 1961, 94, 1533.
 (14) Dalziel, J. R.; Aubke, F. Inorg. Chem. 1973, 12, 2707.

0020-1669/80/1319-0607\$01.00/0 © 1980 American Chemical Society

However, due to the lack of a suitable strong, synthetically useful oxidizing agent containing the CF₃SO₃ group, the synthesis of many desired compounds is difficult or impossible at the present time. We therefore undertook the synthesis of BrOSO₂CF₃ and ClOSO₂CF₃.¹⁷

This paper reports the synthesis and characterization of $XOSO_{3}CF_{3}$ (X = Cl and Br) and an analysis of the Raman spectrum of the hypochlorite. No previous assignments for a simple covalent CF₃SO₃ derivative were available, and the related compounds CF₃SO₂F and CF₃SO₂OH were also examined. Previous attempts to obtain the Raman spectrum of CF₃SO₃H were unsuccessful due to very strong fluorescence. This problem was avoided in our work by careful elimination of organic impurities.

Experimental Section

General Procedure. All work was carried out in Pyrex and stainless steel vacuum systems equipped with glass-Teflon or stainless steel valves. Pressures were measured with a Wallace and Tiernan differential pressure gauge, Series 1500. Temperatures were measured by using a digital copper-constantan thermocouple. Quantities of reactants and products were measured either by direct weighing or by PVT measurements with the assumption of ideal gas behavior.

Routine IR spectra were taken on a Perkin-Elmer 337 spectrometer at 5-100 torr. A 10-cm Pyrex glass cell fitted with AgCl windows was employed. IR spectra for assignment were taken on a Perkin-Elmer 180 spectrometer at 5-15 torr. Raman spectra were taken with a Spex 14018 double monochromator with photon-counting detection. Excitation was via the 515.4-nm line of an Ar⁺ ion laser using 150-350 mW of power. Depolarization ratios were determined by method IV as described by Claassen et al.¹⁸ A low-temperature glass cell similar to that described by Brown et al. was used to record the low-tem-perature spectra.¹⁹ The cell was cleaned thoroughly with The cell was cleaned thoroughly with $Na_2Cr_2O_7/H_2SO_4$ before use with CF₃SO₃H. No hydrocarbon materials were allowed to contact the sample area.

Unless otherwise noted, NMR spectra were recorded on a Varian XL-100-15 spectrometer using 20-15 mol % solutions in CFCl₃. Spectra were at 94.1 MHz for F with CFCl₃ as an internal reference.

Molecular weights were determined by vapor density measurements using a calibrated Pyrex bulb fitted with a glass-Teflon valve. Determinations were made on successive fractions of each sample.

Melting points were taken in a Pyrex tube fitted with a glass-Teflon valve. The compound was pumped under vacuum onto the wall of the tube cooled by liquid N_2 forming a crystalline ring. The tube was placed in an ethanol bath, which was cooled to -112 °C prior to the measurement and then warmed slowly with proper agitation.

Vapor pressures and boiling points of the products were measured by a static method. Equations describing pressure as a function of temperature were obtained by a least-squares fit of the data to both linear and quadratic equations, and the best fit is reported.

For further purifications, the reaction products were separated via GLC on a Victoreen Series 4000 gas chromatograph equipped for gas injection, TCD, and low-temperature collection. A 2 ft \times ³/₈ in. column packed with 40% Halocarbon 11-21 polymer oil on acidwashed Chromosorb P was used in most cases.

Reagents. CF₃SO₃H was obtained from Aldrich Chemical Co. and was purified by distillation. Bromine was dried over P4O10 and distilled before using. Chlorine monofluoride was prepared by heating equimolar amounts of Cl₂ and F₂ at 250 °C in a Monel bomb and was taken out of the bomb at -111 °C to prevent contamination by ClF₃ and unreacted Cl₂. Fluorine was obtained from Air Products and was passed through a NaF scrubber before use.

Preparation of CF₃SO₂OCl. The compound was prepared many times in varying amounts. A typical procedure is described. CF₃SO₃H was vacuum transferred through a short glass connection into a ~ 15 mL Kel-F reactor cooled to -196 °C and fitted with a 304 stainless

steel valve. The exact amount of acid was determined by weighing the container before and after transfer. The reactor containing 10.0 mmol of acid was then warmed to 22 °C so that the acid liquefied. It was then cooled to -196 °C and ClF (11.0 mmol) was added from an all stainless steel vacuum line. The mixture was then warmed slowly from -111 to -78 °C (~6 h) and held at -78 °C until all the solid acid was gone and the contents consisted of two liquid layers (~ 8 h). The lower layer, canary yellow in color, is CF_3SO_2OCI and the upper colorless layer is HF. The contents were then pumped on at -78 °C into a Kel-F trap at -196 °C. When essentially no further volatile material was collected, the remaining pale yellow liquid was essentially pure CF_3SO_2OCI . Measurement of the HF removed by weight, after removing other volatiles at -111 °C, indicated the reaction was quantitative within experimental error.

CF₃SO₂OCI: pale yellow to colorless crystals, mp -84.0 to -83.0 °C; ¹⁹F NMR (-40 °C neat) 73.5 (s) (external CFCl₃); Raman at ca. -78 °C, see Results and Discussion.

The decomposition of CF₃SO₃Cl was carried out by attaching a Kel-F reactor to a glass vacuum system of 1250 mL volume. The CF₃SO₂OCl (2.23 mmol) was allowed to stand for 2 days, during which time the pressure increased to 48 torr. The contents of the line and reactor were then pumped into a trap at -196 °C and separated through traps at -111 and -196 °C. The -111 °C trap contained a white solid presumed to be SO3 on the basis of its appearance and considerable experience in handling SO_3 , and the -196°C trap contained 2.20 mmol of CF₃Cl (mol wt 105.1, calcd 104.5) with an IR spectrum indistinguishable from that of a pure, known sample of CF₁Cl.

Preparation of CF₃SO₂OBr. This compound was prepared many times and a typical procedure is described. Onto CF₃SO₂OCl (5.0 mmol) at -196 °C in a ~15-mL Kel-F reactor was condensed Br₂ (2.5 mmol) by vacuum transfer. The reactor was placed in a -60°C bath and shaken by hand. Immediate evolution of Cl₂ was apparent and the liquid phase turned from yellow to a dark red-brown. The latter became more viscous with time and solidified after ~ 2 h. The reaction was then warmed to -20 °C with shaking. The liquid phase became wine red and the evolution of additional Cl₂ was evident. After 2 h, the reactor was cooled to -78 °C and pumped on through a trap at -196 °C. After a few minutes, the reactor was closed again, warmed to -20 °C for a few minutes, and recooled to -78 °C and pumping was continued for \sim 30 min. This resulted in a yellow crystalline solid at -78 °C and Cl₂ (2.5 mmol) in the trap. The latter was measured by reaction with a weighed amount of Hg.

CF₃SO₂OBr: yellow crystalline solid, wine red liquid, mp -27.0 to -26.0 °C; ¹⁹F NMR (-20 °C neat) 73.3 (s) (external CFCl₃); no Raman or IR spectra were successfully recorded.

Decomposition of CF₃SO₂OBr (3.52 mmol) was carried out in the same way as CF₃SO₂OCl. After 20 h, no further pressure increase was noted (initial pressure increase was rapid). The contents of the line and reactor was then pumped into a trap at -196 °C. The total volatile material corresponded to 3.53 mmol. Some nonvolatile white solid (SO₃) remained in the -196 °C trap. The volatiles were condensed onto Hg, and 1.76 mmol of Br2 was removed. The remaining 1.77 mmol was separated by passing through traps at -80 and -196 °C. The -80 °C trap contained 0.18 mmol of a new compound identified as $CF_3SO_3SO_2OCF_3$. The -196 °C trap contained 1.56 mmol of CF₃SO₂OCF₃ and a trace of CF₃Br.

CF₃SO₂OCF₃; bp 19.9 °C; mp -106.0 to -105.0 °C; mol wt found 218.7, calcd 218.0; IR 1465 (s), 1280 (sh, s), 1260 (vs), 1230 (vs), 1148 (sh, s), 1135 (vs), 955 (s), 790 (m), 760 (w), 607 (w), 540 (vw), 505 (vw) cm⁻¹; ¹⁹F NMR ϕ * 74.3 (q, CF₃S), ϕ * 53.6 (q, OCF₃) (J_{FF} = 3.5 Hz); $\Delta H_{vap} = 6.99 \text{ kcal/mol}; \Delta S_{vap} = 23.9 \text{ eu}; \log P (\text{torr}) = 8.0958 - 1528.1/T$. These data are in substantial agreement with that reported by Noftle and Cady (bp 21.1 °C, mp \sim -108.2 °C).²⁰

CF₃SO₂OSO₂OCF₃: mol wt found 297.9, calcd 298.0; IR 1485 (s), 1464 (s), 1290 (s), 1270 (vs), 1250 (vs), 1151 (vs), 1143 (sh, s), 974 (s), 810 (m), 790 (vs), 770 (s), 750 (sh, m), 615 (m), 595 (m), 561 (w), 539 (vw), 510 (m) cm⁻¹; ¹⁹F NMR ϕ * 72.9 (s, CF₃S), ϕ * 56.1 (s, OCF₃).

Results and Discussion

Synthesis and Properties of CF_3SO_2OX (X = Cl, Br). The new hypohalites CF₃SO₂OCl and CF₃SO₂OBr are prepared

⁽¹⁵⁾ Howells, R. D.; McCown, J. D. Chem. Rev. 1977, 77, 69.

⁽¹⁶⁾ Hendrickson, J. B.; Sternback, D. D.; Bair, K. W. Acc. Chem. Res.

^{1977, 10, 306.} (17) For a preliminary report on the synthesis of CF_3SO_2OCI , see: Des-

Marteau, D. D. J. Am. Chem. Soc. 1978, 100, 340. Claassen, H. H.; Selig, H.; Shamir, J. Appl. Spectrosc., 1969, 23, 8. Brown, C. W.; Hopkins, A. G.; Daly, F. P. Appl. Spectrosc. 1974, 28,

Chlorine and Bromine Trifluoromethanesulfonates

in high yield by the following low temperature reactions.

$$CF_{3}SO_{3}H + ClF \xrightarrow{-78 \ ^{\circ}C} CF_{3}SO_{2}OCl + HF$$
$$2CF_{3}SO_{2}OCl + Br_{2} \xrightarrow{-60, -20 \ ^{\circ}C} 2CF_{3}SO_{2}OBr + Cl_{2}$$

Both are thermally unstable at 22 °C with $CF_3SO_2OBr \ll$ CF₃SO₂OCl. The thermal decomposition is straightforward for the hypochlorite, yielding CF_3Cl and SO_3 as the only products.

$$CF_3SO_2OCI \xrightarrow{22 \circ C} CF_3CI + SO_3$$

The decomposition is mildly exothermic as is evident when a pure liquid sample of CF₃SO₂OCl is warmed to 22 °C in a Kel-F container. After a short time, the nearly colorless liquid begins to reflux.

The decomposition of CF₃SO₂OBr is more complex. Essentially no CF_3Br is detected and the products are SO_3 , CF₃SO₂OCF₃, CF₃SO₂OSO₂OCF₃, and Br₂.

$$CF_{3}SO_{2}OBr \xrightarrow{22 \circ C} CF_{3}SO_{2}OCF_{3} (90\%), CF_{3}SO_{2}OSO_{2}OCF_{3} (10\%), SO_{3}, Br_{2} (100\%)$$

This decomposition may initially form CF₃Br and SO₃, which are utilized in subsequent reactions to form the observed products.

$$CF_{3}SO_{2}OBr \rightarrow CF_{3}Br + SO_{3}$$

$$CF_{3}Br + CF_{3}SO_{2}OBr \rightarrow Br_{2} + CF_{3}SO_{2}OCF_{3}$$

$$\xrightarrow{SO_{3}} CF_{3}SO_{2}OSO_{2}OCF_{3}$$

The formation of $CF_3SO_2OCF_3$ in this way has been demonstrated independently.²¹ On the other hand, CF_3Cl has been shown not to react with CF₃SO₂OCl.²¹ Thus the two decompositions are probably analogous, but for CF₃SO₂OBr the primary decomposition products may undergo secondary reactions.

The three halogen(I) derivatives of CF₃SO₃H form an interesting series. The iodine compound is a relatively high melting solid (mp 122 °C) and is said to be thermally stable to 170 °C¹⁴. Clearly this stability, when compared to CF_3S - O_2OCl and CF_3SO_2OBr , is high and must be due to stabilization via polymerization as suggested by Dalziel and Aubke from their IR spectra.¹⁴ The ultimate thermal decomposition of CF₃SO₂OI is similar to that of CF₃SO₂OBr.

$$2CF_3SO_2OI \xrightarrow{170 \text{ °C}} I_2 + SO_3 + CF_3SO_2OCF_3$$

This polymerization in the case of the iodine compound renders the compound less useful for synthetic purposes.

The reactivity of CF_3SO_2OX (X = Cl, Br) is high. They add to a variety of olefins by a stereospecific cis addition²² and undergo substitutive electrophilic dehalogenation reactions like FSO₂OBr with a variety of organic²¹ and inorganic substrates.²³ As was anticipated, many new trifluoromethanesulfonates can be prepared and the ultimate scope of this reaction is under active investigation. In all respects, the reactivity of CF_3SO_2OX (X = Cl, Br) appears to parallel that of FSO₂OBr. In the first synthesis of FSO₂OBr from $S_2O_6F_2$ and Br_2 , the compound was described as a red-black liquid. This was subsequently found to be due to a bromine impurity and probably formation of the unstable Br₃OSO₂F.^{6,24} Bro-

Johri, K.; Katsuhara, Y.; DesMarteau, D. D., to be submitted for (23) publication. Wilson, W. W.; Winfield, J. M.; Aubke, F. J. Fluorine Chem. 1976, mine(I) trifluoromethanesulfonate is similar. When free of Br₂, it is a clear wine red liquid. When contaminated with small amounts of Br₂, it is a dark red-brown liquid. In all probability, CF₃SO₂OBr₃ is formed and is responsible for the striking color change.

Chlorine(I) trifluoromethanesulfonate is remarkably electrophilic. It is considerably more reactive than FSO₂OCl, undergoing reactions with many alkyl halides at low temperature whereas FSO₂OCl must be heated in some cases. With CF_2Cl_2 , CF_3SO_2OCl reacts above -50 °C, whereas FSO_2OCl required heating at 80 °C.^{4,25} Chlorine(I) trifluoromethanesulfonate even adds to SF4,23 whereas FSO2OCI was unreactive.²⁶ This greater reactivity may be due to a more pronounced Cl⁺ character in the trifluoromethanesulfonate but no direct evidence can be presented for this at the present time.

The spectroscopic characterization of CF₃SO₂OBr is limited at the present to its ¹⁹F NMR spectrum. Attempts to record the low-temperature Raman spectrum were unsuccessful due to the strong absorption of laser light by the colored compound. Wavelengths up to 620 nm were ineffective in surmounting this problem. Its infrared spectrum could not be recorded due to its instability and reactivity with window materials (KCl or AgCl). For CF₃SO₂OCl the low-temperature Raman spectrum was readily obtained and is discussed in the following section. The IR spectrum of CF₃SO₂OCl was obtained at 22 °C, but decomposition and rapid attack of the window materials (KCl or AgCl) made the observed frequencies uncertain. This did not prove to be a problem, since 20 of 21 fundamentals were observed in the Raman spectrum.

Analysis of the Raman Spectra of CF_3SO_2X (X = F, OH, OCI). In order to assign the Raman spectrum of CF₃SO₂OCl, it was desirable to have available a related series of compounds. The only compounds for which any detailed studies had been attempted were various ionic salts of CF₃SO₃⁻ and several compounds such as $I(OSO_2CF_3)_3$ and $Rb[I(OSO_2CF_3)_4]$.¹⁴ The complexity of the observed spectra of the latter precluded comparison with the simple, covalent CF₃SO₂OCl, and large differences might be expected in going from a covalent CF_3SO_2O - to $CF_3SO_3^-$. We therefore undertook an investigation of the Raman spectra of CF₃SO₂F and CF₃SO₂OH to aid in the assignment of CF₃SO₂OCl. In addition to aiding in the assignment of CF₃SO₂OCl, CF₃SO₂F and CF₃SO₂OH suggested a resolution for conflicting assignments for the CF₁SO₁⁻ ion.

CF₃SO₂F and CF₃SO₂OH. CF₃SO₂F and CF₃SO₂OH, a pseudoisoelectronic pair differing in mass by only two units, have, as liquids, very similar Raman spectra from 0 to 1500 cm⁻¹ (Figure 1). Frequency, relative intensity, and polarization data are presented in Table I along with the proposed assignment based on C_s symmetry overall but local C_{3v} symmetry for the CF₃ group. CF_3SO_2OH would have an SO(H)stretch replacing the SF stretch of CF₃SO₂F and the additional stretching, bending and torsional modes of the OH group. However, the OH stretch would be outside the 0-1500-cm⁻¹ range and the OH torsion would probably be too weak and broad to observe. The OH bend might be expected in the 1000-1200-cm⁻¹ region by analogy to H₂SO₄, CH₃SO₂OH, FSO₂OH, and ClSO₂OH²⁷ and SF₅OH.²⁸

The only band present in CF₃SO₂OH with no counterpart for CF₃SO₂F, a polarized band at 1122 cm⁻¹, is assigned to the SOH bend. The symmetric and antisymmetric SO₂

Katsuhara, Y.; DesMarteau, D. D. J. Am. Chem. Soc., in press. Katsuhara, Y.; DesMarteau, D. D. J. Am. Chem. Soc. 1979, 101, 1039. (21)

⁽²²⁾

⁽²⁴⁾ 7, 245.

⁽²⁵⁾ Fokin, A. V.; Studnev, Y. N.; Rapkin, A. I.; Kuznetsova, L. D., Izv. Akad. Nauk SSSR, Ser. Khim. 1974, 1817. (26) Gilbreath, W. P. Ph.D. Thesis, University of Washington, 1962.

 ^{(27) (}a) Gillespie, R. J.; Robinson, E. A. Can. J. Chem. 1962, 40, 644. (b) Savoie, R.; Giguere, P. A. Ibid. 1964, 42, 277. (c) Chackalackal, S. M.; Stafford, F. E. J. Am. Chem. Soc. 1966, 88, 4815.
 (28) Seppelt, K. Angew. Chem., Int. Ed. Engl. 1976, 15, 44.

	ymmetry ^g	c'				$\nu_{as}(CF_3)A$ $\nu_{as}(CF_3)A'$	$\nu_{\rm s}({\rm CF}_3){\rm A}'$					δ ₂₂ (CF ₂)Α''	$\delta_{as}(CF_3)A'$							$\rho(CF_3)A'$	"AV 30)"	$2\tau(OCI)$	T(OCI) an data are measure- n the nota- 2,011, and 9,5, 0, 71; wag) are de- CF ₃ SO ₂ - licheva, ne of the possess only
	description ^f and s	C _s	(HO)a	$v_{as}(SO_2)A''$	$\nu_{\rm s}({\rm SO}_2){\rm A}'$	$p_{\mathbf{d}}(CF_3)E$	$\nu_{\mathbf{s}(CF_3)A_1}$	δ(SOH)A' ν(SO(X))A'	$\nu(SF)A'$	$\delta_{\mathbf{S}}(CF_3)\mathbf{A}_1$	$\nu(\text{OCI})A'$	6(JCF.)E		δ (SO(H) wag)Λ'	δ(SF wag)A'	o(DO2 FOCK)A	δ(SO(CI) wag)A δ(SCF, wag)A'	1 s / s / s / s / s / s / s / s	$\int 0 (1 \times 10^{-1} \text{ cm}) \sqrt{1 \times 10^{-1}}$	$\nu(CS)A'$	δ (SOCI)A' 2.(CE)E	P(Cr3)E	, depolarized. ^b Ram Depolarization ratio ally R rather than ρ_s in for CF ₃ SO ₂ F, CF ₃ SC F ₃ SO ₂ F, 333 cm ⁻¹ , 1 D ₂ twist) and δ (SCF ₃ , 1 P_{1} , wist) and δ (SCF ₃ , 1 P_{2} , twist) and δ (SCF ₃ , 1 P_{1} , d IR data of Ba he descriptions of son ρ_{2} OCI is assumed to 1
				1.0	0.10			0.40	0.60		0.15	Ч			0.65	0.1	0.37	0	1.U		0.50		rized; dp blarized. ad are rea his work his work llows: C If δ (SC Ved valu SCF, wag SCF, wag ssion of 1 p. CF ₃
		Raman		5	45			15	15		100	-		1	4 5 c	- 00	80		0		25		; p, pola i or deporte s reporte a from t are as fo F_3 wag). the observe than δ (5 than δ (5 than δ (5 than δ (5)
	$0_2 0 Cl^e$			1478	1225			856	830		706				486		363	000	207		212		, shoulder s polarized the number Raman dat The data a with δ (SCI less than t less than t n 3 f Son u. 3 f Son the C
	FS	IR		1453 vs	1231 vs			860 vs	827 vs		710 s 570 and 570 s	e nic nim cic			485 m 528 and 521 a		369 m	340	W 640				ik; vs, very strong; sh ratio or designation a and CF ₃ SO ₂ OCl. Th sed in this work. ^{<i>c</i>} J to δ (SCF ₃ wag)A'. trve or is degenerate v epolarization ratio is ecpected to be less to buke and DesMartea t local C ₃₀ symmetry
0_20CI		aman		0.78	0.21	b ;	0.14	0 53	222	0.45	0.29	0.92	0.55		0.70	0.19	0.53 ≰0.62 ^c		?	$0.70 \\ 0.45$, 0.38	0.48	$\sim_{1.01}$ w, very wea olarization 1 F_3SO_2OH , i thromator u thromator u thromator u is assigned veak to obsect veak to obsect veat to obsect veat to obsect veak to obsect veat to veat to veat to veat to veat to veat to veat to veat to veat t
id CF ₃ S(20Cl ^c R		9	35	·· ~·	23	96	ì	40	100	13	12		~	1 t	°, ≪30	d or	¢.	48 52	,20 ,	. 6 6	2 strong; v and dep SO ₂ F, C e monoc e monoc is too w larized s polarized s and Ab
SO ₂ OH, and		CF ₃ SO		1435	1241	~1139	1125	821	110	171	685 - 504	569	556		100	477	411 336	not obs	336	321 302	211	184	C_{s} redium; s, red nd is 100, 8) for CF ₃ 018 double and near 3 and near 3 node either weakly po weakly po not be dep not be dep , Levchuk, , Levchuk,
SO ₂ F, CF ₃ S	00 LD	$OD IR^{d}$	2320 1810	1420	1256		1156	030		778	677	572		500									weak, m, m t intense ba 1969, 23, 8 he Spex 14 he Spex 14 se a single b se a single b o 2 twist) m o 2 twist)
tals for CF ₃			; d	0.82	0.22	-,		0.12	000	<0.06	0.31	0.91		0.82	00.0	0.07	≤0.82 ^c		dp^c	< 0.33	1 0	0.1	follows: w, ere the mos . Spectrosc. asured for t In each ca 1. The $\delta(S$ 2. The $\delta(S$ the intensit the intensit the intensit the are at Ω_2 OH are at
ındamen	Hc,d	aman	мм	4	19	€~	~4 •	<u>. 1</u>	1	100	4	23		4	ŝ	4 2	≤26)I	÷.	61	ç	4	id are as 1 scale wh becn me becn me ectively. 30, 0.6 most of $7_3 SO_2 OC$? IR and TR and Up.
signment of Fu	CF_3SO_2O	×	~ 3000 ~ 2300	1400	1244	7¢71~	$\sim 1152 \text{ sh}$	930		775	620	570		499	470 Å	4 / 0 SII	340	not obsd e	340	312	100	107	breviations use intensity on a selig, and Shar since f has not oCL, 336 cm ⁻¹ to contribute 1 to contribute ized and for C g CF ₃ SO ₂ F a g CF ₃ SO ₂ F a
ata and As		\mathbb{IR}^d	3050 2390	1420	1256	1221	1156	030		778	677	572		500									2m ⁻¹ . Ab ¹ , relative Claassen, 5 ad Shamir ad CF ₃ SO ₂ ad CF ₃ SO ₂
Raman ^{a, b} Di		lan		~ 1.0	0.11	∩.1~	0.29	0.18	0.18	<0.04	0.73	0.92			0.83	77.0	≤0.71 ^c		dp^c	0.29	~10	0.11	Process are in $($ uency in cm ⁻ hethod IV of seen, Selis, ar uids near - 7 . 26, 0.82; an 'ag)A' may bi 'ag)A'
ufrared and		SO ₂ 1 ^{,c} Ram		1	25 25	c.u	5		3	100	ç	7.5			2.5	1	≪19.5	or	÷	37	ç	4	srved freque s order freque made by m le l of Claas le l of Claas la s pure le 340 cm^{-1} , 340 cm^{-1} , 340 c
Table I. In	-	CF ₃ .		1467	1270	US CC7 I~	1140		829	171	611	564		001	488	0.1	333	not obsd	333	301	106	χ.	^a All obse listed in the ments were tion of Tab. CF ₃ SO ₂ OH CF ₃ SO ₂ OH CF ₃ SO ₂ OH CF ₃ SO ₂ OH Ligus, and I modes has t C ₁ symmetr

5

Chlorine and Bromine Trifluoromethanesulfonates

Table II. Summary of Observed Frequencies (cm⁻¹) below 1500 cm⁻¹ for CF₃SO₂F and CF₃SO₂OH^a Fundamentals

CF ₄ SO ₄ F	C	F₃SO₂OH	CF ₃ - SO ₂ OD	description ^b and
Raman ^d	IR	Raman ^d	ÍŔ	symmetry ^c C _s
1467 dp	1420	1400 dp	1400	$\nu_{as}(SO_2)A''$
1270 p	1256	1244 p	1256	$\nu_{\rm s}({\rm SO}_2){\rm A}'$
~1235 dp	1220	~1232 ?	1220	$\nu_{\rm d}({\rm CF}_3){\rm E}$
1140 p	1156	~1152 ?	1156	$\nu_{\rm s}({\rm CF}_3){\rm A}_1$
-		1122 p		δ(SOH)A'
829 p	930	930 p	930	$\nu(SF)/\nu(SO(H))A'$
771 p	778	775 p	778	$\delta_{s}(CF_{3})A_{1}$
611 p	622	620 p	622	$\delta(SO_2 \text{ bend})A'$
564 dp	572	570 dp	572	$\delta_{d}(CF_{3})E$
488 wp	500	499 wp	500	δ (SF wag)/ δ (SO(H) wag)A'
463 dp		478 sh, dp		$\delta(SO_2 \operatorname{rock})A''$
333 wp		340 wp		δ (SCF, wag)A'
not obsd or		not obsd or	1	
333 dp		340 dp	j	$\delta(SO_2 \text{ twist})A$
301 p		312 p		$\nu(CS)A'$
196 d		201 dp		$\rho(CF_3)E$

^a For detailed information see Table I including its footnotes. ^b Some discussion of the descriptions of some of the modes has been given elsewhere. ${}^{35,38,43,48-51}$ ^c CF₃SO₂F and CF₃SO₂OH are assumed to possess C_s symmetry overall, but local C_{3U} symmetry for the CF₃ group. ^d Abbreviations are as follows: p, polarized; dp, depolarized; wp, weakly polarized.

stretches assigned at 1467 and 1270 cm⁻¹, respectively, for CF₃SO₂F are higher than those for CF₃SO₂OH at 1400 and 1244 cm⁻¹, respectively, due to the higher electronegativity of F over OH.²⁹ The CF₃ group, which should provide the F over OH.^{29¹} The CF₃ group, which should provide the remaining bands above 1000 cm⁻¹, is assumed to follow C_{3v} selection rules due to free rotation along the CS bond. The symmetric CF₃ stretch is assigned to the polarized band at 1140 cm⁻¹ in CF_3SO_2F and to the shoulder at ~1152 cm⁻¹ on the SOH bend at 1122 cm⁻¹ in CF₃SO₂OH. The very weak depolarized shoulder at ~ 1235 cm⁻¹, on the symmetric SO₂ stretch at 1270 cm⁻¹, in CF₃SO₂F is assigned to the degenerate CF_3 stretch. Analogously, the degenerate CF_3 stretch is assigned to the weak band suggested to be present at ~ 1232 cm^{-1} , on the side of the symmetric SO₂ stretch at 1244 cm^{-1} , in a perpendicular polarization scan of CF₃SO₂OH.

The infrared data of Balicheva, Ligus, and Fialkov³⁰ for liquid CF₃SO₂OH and liquid CF₃SO₂OD near room temperature became consistent with our assignment by reversal of their CF stretch and symmetric SO_2 stretch assignments. Our assignment for the 1000–1500-cm⁻¹ region is summarized in Table II.³¹

The region 700-1000 cm⁻¹ is expected to contain only two modes. Several compounds with CF_3S groups have a strong polarized Raman band near 750 cm^{-1.32-34} Although this band

Figure 1. Raman spectra of the liquid CF₃SO₂F at -78 °C (A), CF₃SO₂OH at -20 °C (B), and CF₃SO₂OCl at -78 °C (C). The band near 1070 cm⁻¹ (C) marked with an asterisk is due to SO_3 impurity.

is usually labeled as a symmetric CF₃ deformation, normalcoordinate analyses of the CF₃SO₃⁻ ion by both Miles, Doyle, Cooney, and Tobias³³ (MDCT) and Burger, Burczyk, and Blaschette³⁴ (BBB) show more CF₃ and CS stretching character in this mode than CF₃ deformation character. For both CF₃SO₂F and CF₃SO₂OH, the most intense and highly polarized bands in the Raman spectra at 771 and 775 cm⁻¹, respectively, are labeled as the symmetric CF₃ deformation. However, in spite of the fact that we follow the usual practice of labeling a band as the symmetric CF₃ deformation, we believe that the mode responsible for the strong polarized Raman band near 775 cm⁻¹ is a far more complex motion than a symmetric CF₃ (umbrella) deformation.³⁵ For CF₃SO₂OH

- (Ag[CF₃SO₃])
- (35) It is reasonable that the symmetric CF_3 stretching, symmetric CF_3 (umbrella) deformation, and CS stretching symmetry coordinates for a CF₃S group of local C_{3y} symmetry may couple strongly in these compounds to form a normal coordinate similar to the result of BBB³⁴ for $CF_3SO_3^-$. It may well be that no CF_3S containing compound has any normal mode that is a symmetric CF_3 (umbrella) deformation group frequency in the sense of having 66% or more contribution to the calculated frequency from one diagonal force constant.³⁶
 (36) Fuhrer, H.; Kartha, V. B.; Kidd, K. G.; Kruger, P. J.; Mantsch, H. H.

NRC Bull. 1976, No. 15, 189-92.

⁽²⁹⁾

Fox, W. B.; Franz, G. Inorg. Chem. 1968, 5, 946. Balicheva, T. G.; Ligus, V. I.; Fialkov, Y. Y. Russ. J. Inorg. Chem. (Engl. Transl.) 1973, 18, 1701. (30)

The absence of an IR band at $\sim 1120 \text{ cm}^{-1}$ due to the SOH bend in (31) CF_3SO_2OH is most probably due to a different extent of hydrogen bonding and consequent different SOH bend frequency between room temperature where the IR data were recorded and near -20 °C where the Raman spectra were recorded. If the local C_{3v} symmetry of the CF₃ group were broken to the extent that the degenerate CF3 stretch were split, then an additional polarized Raman band would be expected in the 1100–1300-cm⁻¹ region. One might assign the 1122-cm⁻¹ polarized Raman band in CF₃SO₂OH as an asymmetric CF₃ stretch of A' symmetry under C_s symmetry rather than the SOH bend. But then it is difficult to understand why such a band is not observed for CF3SO2F if the cause of the band is the removal of the C_{3v} local symmetry of the CF₃ group. It is, of course, possible that the local C_{30} symmetry of the CF₃ group is broken but the band is too weak to observe or is so weakly polarized and so slightly shifted that it is not distinguishable from the bands at ~ 1232 and ~ 1235 cm⁻¹ for CF₃SO₂OH and CF₃SO₂F, respectively. However, we base our analysis on the assumption that the CF_3 group retains its local C_{3v} symmetry in both compounds.

^{(32) (}a) Griffiths, J. E. Spectrochim. Acta, Part A 1967, 23, 2145 (CF₃SF₃). (b) Carter, H. A.; Wang, C. S.; Shreeve, J. M. Spectrochim. Acta 1973, 29, 1479 (CF₃SCF₃, CF₃S(O)CF₃, CF₃SSCF₃). (c) Borrajo, J.; Varetti, E. L.; Aymonino, P. J. J. Mol. Struct. 1975, 29, 163 (CF₃SH). (d) Kirschmerer, R. L.; Shreeve, J. M. Inorg. Chem. 1975, 14, 2431 (CF₃S(O)F, CF₃S(O)Cl). (e) Burger, H.; Pawelke, G.; Haas, A.; Willner, H.; Downs, A. J. Spectrochim. Acta, Part A 1978, 34, 287 ((SCF₃)₃N). (f) Holmes-Smith, R. D.; Stobart, S. R. Inorg. Chem. 1979, 18, 538 (SCF₃GeH₃, (SCF₃)₂GeH₂, SCF₃GeH₂GeH₃).
(33) Miles, M. G.; Doyle, G.; Cooney, R. P.; Tobias, R. S. Spectrochim. Acta, Part A 1969, 25, 1515 (Na[CF₃SO₃], Ba[CF₃SO₃]₂).
(34) Burger, H.; Burczyk, K.; Blaschette, A. Monatsh. Chem. 1970, 101, 102 (Ag[CF₃SO₄]).

the polarized Raman band at 930 cm⁻¹ is assigned to the SO(H) stretching mode as are the IR bands in CF₃SO₂OH and CF₃SO₂OD at 930 cm⁻¹. For CF₃SO₂F, the analogous mode to SO(H) stretching in CF₃SO₂OH is SF stretching which is assigned to the polarized Raman band at 829 cm⁻¹.

For a CF₃ group of local C_{3v} symmetry, the degenerate CF₃ deformation and CF₃ rocking modes remain. The regions expected for these weak depolarized bands are 515–560 and 215–310 cm⁻¹, respectively.^{32a,c,37} The depolarized bands at 564 and 570 cm⁻¹ in CF₃SO₂F and CF₃SO₂OH, respectively, are assigned to the degenerate CF₃ deformation. The only weak depolarized Raman bands near the expected range of 215–310 cm⁻¹, at 196 and 201 cm⁻¹ in CF₃SO₂F and CF₃SO₃F and CF₃SO₂F and CF₃F and CF and CF and CF and CF and CF

Although the CS stretching mode has been assigned from 450 to 500 cm⁻¹ in several molecules containing CF₃S groups,^{32b-e} a medium to strong polarized Raman band near 325 cm⁻¹ has been assigned to ν (CS) in CF₃SF₅^{32a} and the CF₃SO₃⁻⁻ ion.^{33,34} The normal-coordinate analyses of the CF₃SO₃⁻⁻ ion by MDCT³³ and BBB³⁴ both show this mode to have significant CF₃ and SO₃ deformation contributions. The second most intense bands, both polarized, in the Raman spectra at 301 and 312 cm⁻¹ for CF₃SO₂F and CF₃SO₂OH, respectively, are labeled as the CS stretching mode. However, in spite of the fact that we label a band as CS stretching, we believe that the mode responsible for the strong polarized Raman bands near 310 cm⁻¹ is a more complex motion.³⁸

The four bands remaining unassigned for each compound must be due to five remaining modes of an XSO₂Y system. These may be classified as follows under C_s symmetry:³⁹ XSY deformation (A'), SO₂ bend (A'), SO₂ twist (A''), SO₂ rock (A"), and SO₂ wag (A'). An alternative description,⁴⁰ which we will adopt, is to use SX wag (A') and SY wag (A') rather than XSY deformation (A') and SO₂ wag (A'). In either description under C_s symmetry, there will be three polarized (A') modes and two depolarized (A'') modes. The fact that three of the four observed bands appear to be depolarized is an anomaly. However, the data for CF₃SO₂F suggest an explanation. The four frequencies and their depolarization ratios are: 611 cm⁻¹ and 0.23, 488 cm⁻¹ and 0.83, 463 cm⁻¹ and 0.92, and 333 $\rm cm^{-1}$ and 0.71. Taking the apparently depolarized band with the lowest depolarization ratio as being an overlap of a weakly polarized and a depolarized pair of bands gives a fifth frequency. An alternative possibility is that the band corresponding to one of the depolarized modes is too weak to observe. In either case, the observed band with the next lowest depolarization ratio is taken as weakly polarized. For CF₃SO₂F the following list results: 611 cm^{-1} (p), 488 cm^{-1} (wp), 463 cm⁻¹ (dp), 333 cm⁻¹ (wp). The fifth frequency is either not observed or is 333 cm^{-1} (dp).

Assignments for these five frequencies are made to be consistent with the following XSO_2Y cases: FSO₂F,^{39,41}

- (39) Toyuki, H.; Shimizu, K. Bull. Chem. Soc. Jpn. 1966, 39, 2364.
- (40) Gillespie, R. J.; Robinson, E. A. Spectrochim. Acta 1962, 18, 1473.
- (41) Gillespie, R. J.; Robinson, E. A. Can. J. Chem. 1961, 39, 2171.

FSO₂OH,²⁷ HOSO₂OH,²⁷^a DOSO₂OD,²⁷^a FSO₂Cl,^{39,40} HOSO₂Cl,²⁷ FSO₂Br,⁴¹ ClSO₂Cl,^{39,41} FSO₂OF,^{3,42} FSO₂O-Cl,^{3,42} FSO₂OBr,³ and FSO₂OI.³ For the two depolarized modes, the SO₂ rock has been assigned to a higher frequency than the SO_2 twist in all cases. Consequently, we assign 463 cm^{-1} as the SO₂ rock, and the SO₂ twist either is not observed or is 333 cm⁻¹. For FSO₂Y compounds with Y = OH,^{27a,b,42} Cl,^{39,40} Br,⁴¹ OF,^{3,42} OCl,^{3,42} OBr,³ and OI,³ the SF wag has been assigned in the range 308-500 cm⁻¹ with all but two in the range 385-500 cm⁻¹. Consequently, we assign 488 cm⁻¹ as the SF wag. For these same FSO_2Y cases, the SO₂ bend has always been assigned as the highest of the five XSO₂Y system frequencies and in the range 555-627 cm⁻¹. Consequently, we assign the SO_2 bend to the polarized band at 611 cm⁻¹. The remaining weakly polarized band at 333 cm⁻¹ is assigned to the SCF₃ wag consistent with the SCF₃ wag in CF₃SF₅ being assigned at 320 cm⁻¹.^{32a} If these assignments are extended to the analogous bands for CF₃SO₂OH with the SF wag in CF₃SO₂F becoming an SO(H) wag in CF₃SO₂OH, the summary shown in Table II can be made for all the bands below 1500 cm⁻¹.⁴³ No bands assignable to the CF₃ torsion were observed.

Our data and assignments for CF₃SO₂OH are of particular interest due to the discrepancy between the results of Miles, Doyle, Cooney, and Tobias³³ (MDCT) for Na[CF₃SO₃] and Ba[CF₃SO₃]₂ and Burger, Burczyk, and Blaschette³⁴ (BBB) for Ag[CF₃SO₃]. Although both groups report strong IR bands in the 630–650-cm⁻¹ range for the three solid salts, BBB observe a strong polarized Raman band at 635 cm⁻¹ in aqueous Ag[CF₃SO₃] but MDCT do not report any Raman bands between 600 and 700 cm⁻¹ for aqueous Na[CF₃SO₃] and Ba[CF₃SO₃]₂. Consequently, BBB and MDCT are led to make different assignments for the CF₃ and SO₃ deformations. Both groups support their results by adopting analogous conflicting assignments for CCl₃SO₃⁻ salts.

On the basis of our CF₃SO₂OH assignments, the BBB assignments for the SO₃ and CF₃ deformations of the CF₃SO₃⁻ ion are strongly favored.⁴⁵ Table III presents our assignments for CF₃SO₂OH and the CF₃SO₃⁻ and CCl₃SO₆⁻ and CCl₃SO₃⁻ salt data of BBB and MDCT. For CF₃SO₃⁻ and CCl₃SO₃⁻ salts we retain the assignments of BBB except for a reversal of $\nu_d(SO_3)$ and $\nu_d(CF_3)$ for CF₃SO₃^{-.46} The changes in as-

(45) Lowering the C_{3v} symmetry of the SO₃ segment of the CF₃SO₃⁻ ion to the C, symmetry of CF₃SO₂OH as an XSO₂Y structure changes the single A₁ mode [δ₈(SO₃)] and two E modes [δ_d(SO₃) and ρ(SO₃)] into three A' modes [SO₂ toed, SO(H) wag, and SCF₃ wag] and two A'' modes [SO₂ rock and SO₂ twist]. Reference to Table III shows the following association between the CF₃SO₃⁻ ion assignments of BBB and ours for CF₃SO₂OH: δ₈(SO₃) at 635 cm⁻¹ with δ(SO₂ bend) at 620 cm⁻¹, δ_d(SO₃) at 521 cm⁻¹ with a small splitting (incompletely resolved, see Figure 1B) into δ(SO(H) wag) at 499 cm⁻¹ and δ(SO₂ rock) at 478 cm⁻¹, ρ(SO₃) at 359 cm⁻¹ with δ(SCF₃ wag) (and possibly δ(SO₂ twist)) at 340 cm⁻¹. Also 570 cm⁻¹ as δ_d(CF₃) in CF₃SO₂OH, with local C_{3v} symmetry for the CF₃ group, agrees well with 582 cm⁻¹ in the CF₃SO₃⁻ ion.

^{(37) (}a) Burger, H.; Cichon, J.; Demuth, R.; Grobe, J. Spectrochim. Acta, Part A 1973, 29, 943 (CF₃SH, CF₃SD, CF₃SeH, CF₃SeD). (b) Burger, H.; Eujen, R. *Ibid.* 1975, 31, 1645 (CF₃GeX₃, X = F, Cl, Br, I). (c) Wahi, P. K.; Patel, N. D. Can. J. Spectrosc. 1977, 22, 88 (CF₃SeH, CF₃SeD).

⁽³⁸⁾ It is reasonable that the mode responsible for these bands involves CS stretching, CF₃ deformation, and possibly some kind of SO₂X deformation motion in analogy to the result of BBB³⁴ for CF₃SO₃⁻. It is probably true that there is no normal mode in these compounds that is a CS stretching group frequency in the sense of having 66% or more contribution to the calculated frequency from one diagonal force constant.³⁶

⁽⁴²⁾ Qureshi, A. M.; Levchuk, L. E.; Aubke, F. Can. J. Chem. 1971, 49, 2544.

⁽⁴³⁾ Alternate notation for some of the modes is possible. Our $\delta(SO_2 \text{ bend})$ would be called $\delta(SO_2 \text{ scissors})$ by some authors. Our $\delta(SO_2)$ rock is a motion in the SO₂ plane using the convention of Morino and Shimanouchi.⁴⁴ Some authors would call this mode $\delta(SO_2 \text{ in-plane})$. In addition coupling effects may be present which would make other descriptions more appropriate for some modes. For the two bands between 300 and 350 cm⁻¹ a description suggested by a referee is $\delta(CF_3-S)$ in-plane) and $\delta(CF_3-S)$ out-of-plane). In the absence of additional information, we have chosen to retain our description of $\delta(SCF_3 \text{ wag})$ and $\nu(CS)$ with proper qualification of the latter.³⁸ However, the nature of the modes responsible for the bands between 300 and 350 cm⁻¹ must remain uncertain.

⁽⁴⁴⁾ Morino, Y.; Shimanouchi, T. Pure Appl. Chem. 1978, 50, 1707.

i and symmetry ^j		c,	$v_{as}(SO_2)A''$ $v_s(SO_3)A'$	à	δ (SOH)A	∿(SO(H))A'	δ _s (CX ₃)A'	b(SU ₂ bend)A	δ(SO(H)wag)A'	δ (SO ₂ rock)A''	$\delta(SCF_3wag)A'$	δ(SO ₂ twist)A''	larized; dp, depo- polarized. c IR (The $\delta(SO_{2}$ twist) (The $\delta(SO_{2}$ twist) (The $\delta(SO_{2}$ twist) a queous solution a of BBB. ³⁴ A a Nujol mull i MDCT ³³ for sis of BBB sug- wa single band olarization ratio utor to the inten- turo to the inten- turo to the inten-
description	uon dunon	C_{3V}	νd(SO ₃)Ε	$\nu_{d}(CX_{3})E$	$\nu_{\rm s}({\rm CX_3}){\rm A_1}$	$\nu_{\rm s}({\rm SO}_3){\rm A}_1$	$\delta_{\mathbf{s}}(CX_3)A_1$	$\delta_{s}(SU_{3})A_{1}$		aleus)bo	ρ(SO₃)Ε	v(CS)A1 o(CX.)E	y broad; p, po oolarized or de most of the in most of the in man data from ulls. f IR data al CCl ₃ SO ₃] ₂ it Raman data of ordinate analy of the data sho if ty 66 and de uity 66 and de uity 66 and de uity 66 and de vith the 241 ^{-b}
			0.95	0.94^{h}	0.24	0.27	0.83^{n}	$0.50 \\ 0.83^{h}$	00.0	1.00	0.96	0.94 ^h dp	vbd, ver tition as p_{1} to p_{2} ver ed to $\delta(q)$ m_{1} in h_{2} m_{2} m_{3} for m_{2} m_{3} m_{2} for m_{2} m_{3} for m_{1} m_{2} m_{1} m_{1} m_{1} m_{1} is then A_{1} is the set
9	aman		35	99	100	65	97 2	67	; ; ;	10	53	66 43	broad, design, as assign d to co d to co f BBI IR datt of BBI ement ' , the n , the n relati is relati on ratio
CCI ₃ SO ₃			1250	814	413	1060	247	621 261	107	040	339	829	ilder; bd, i ratio or i ratio or e expecte man data man data fion and tion and best agre However system ha system ha ation tha notion
Na[IR	1260 s, bd 1232 s, bd	$812 s^{h}$	410 s, bd	1066 s		616 \$		044 S	333 m	812 s ^h	r strong; sh, shou ed depolarization ed depolarization rat $\frac{1}{3}$, wag) would b $\frac{1}{6}$, d IR and Ra om aqueous solu 000 cm ⁻¹ . ^g The observed. The observed. The t, respectively. ¹ in Ag[CF ₃ SO ₃ the total band s with the expectit
	Ba[CCI ₃ -	SO ₃] ₂ ^f IR	1253 vs d	802 vs	420 w	1078 vs	255 m	629 vs 272 vw		248 S	352 m	834 m 135 s ^g	weak; vs, very and is 100, ar isity 26 and \dot{a} is: then δ (SC) be depolarized aman data fro- and above 10 (7 (s) cm ⁻¹ , is and CSI pelle bove 200 cm ⁻¹ where -1 as ν_{d} (CCI ₃)
	$a[CF_3SO_3]_2^e$	IR	$\int_{vs. vb} vs. vb$	1180	-	1036 s	771 m	637 s 507 s	530 s	513 s	358 m	327 m	cong; vw, very most intense by h relative intern h relative intern of m DDCT. ³³ R 00 to 700 cm ⁻¹ γ one band, 18 γ one band, 18 γ and 814 cm ⁻¹ σ at 829 and 81 σ and 814 cm ⁻¹ σ at 814 cm ⁻¹
			0.79	1.31	0.60	0.10	0.08	0 88	00-00	dp	0.81	0.50 dn	In the second s
э	Raman		22	16	29	100	41	36	2	4	61	73	t, medic cale wh tt 340 c and δ (S0 tributio d Rama d Rama a Cs1 pe Bal CC1 m ⁻¹ ain triappir triappir trian trian trian trian tributio
CF ₃ SO ₃]			1285	1188	1230	1038	766	5 80		070	353	321 208	weak; m try on a s try on a s try on a s try on a s try of a s try of a try of a tr
Na		IR	1280 vs, vbd	1168 s	1232 m	1036 s		630 s 501 s	531 s	515 s	351 m	319 m	te as follows: w. , relative intens , relative intens , u. 20 °C where f , 16 8 (SO , 3 wag). If 8 (SO , 10 1000 cm ⁻¹ an nd 114 (s) cm ⁻¹ , ith 182 and 187 ith 183 and 183 ith 183
pt Ua	- lene	Raman	*		1237 s	1039 sp	772 sp	635 sp 582 w	× 700		359 m	326 mp	ations used a uency in cm ⁻ re liquid near e with δ (SCF rould be exper- i CsI pellet at in from 800 (s), 135 (s), a ^t would be wi or reasonable at e analysis o date analysis o dotrond ruc
۸۳۲CE	Agler	IR	1270 vsb	1167 s	1237 s	1038 vs	767 m	646 vs 587 m	111 70C	s 17c	356 s	323 m 227 w	n ⁻¹ . Abbrevi he order freq his work (pur r is degenerat C ₂ twist) A' un 100 cm ⁻¹ an 90 (w), 182 0 at 177 cm ⁻¹ that seems mo v_d (CCl ₃)E an rund coordin (CCl ₃)E an (CCl ₃)E
			0.82 0.22	~.	? 0.12	0.09	<0.06	0.31	0.82	0.89 ≪0.82°	or	dp [€] <0.33 ~1.0	ties are in cr relisted in t data from t data from t to observe o 82 and $8(8)null below 1ill data belov00 cm-1, ~1)barized banuign to both.$
OHc	Ramar		4 19	~°	~4 13	~4 13 100 100 4 4 23 ≈2 5 ≈2 5 3t obsd	; 79 2	requenci requenci R at a c r weak tr r weak tr r weak tr r weak tr r weak tr r weak tr r we assign $\rho(CX_3)$ $\rho(CX_3)$ $\rho(X_3)$					
CF ₃ SO ₂			1400 1244	1232	1152 1122	930	2175	620 570	499	478 sh 340	F	340 312 201	I observed f 1. b Ramar icom ref 30, is either toc is either toc larization r t data from nation of N our bands t 1, SO, J with 35 cm ⁻¹ fou cm ⁻¹ which the sworlwy
		IR	1420 1256	1220	1156	930	778	622	500	1			^a Al larized data fi mode a depo and IR combi show f Na[CC gests 1 a gests 1 0.94.

signment for the data of MDCT do avoid some of the disturbingly high depolarization ratios for overlapping A_1 and E modes in the original assignments of MDCT.⁴⁷ We offer Table III as the most reasonable and consistent accounting of the data presently available for CF₃SO₂OH and the CF₃-SO₃⁻ and CCl₃SO₃⁻ salts.

CF₃**SO**₂**OCI.** The Raman spectrum of liquid CF₃**SO**₂**OCI** is far more complex than that of CF₃**SO**₂F or CF₃**SO**₂OH (Figure 1). The number of bands which are definitely polarized rules out all but C_1 symmetry overall. The complexity of the spectrum of CF₃**SO**₂OCI compared to CF₃**SO**₂OH is due to reducing the local C_{3v} symmetry of the CF₃ group to either C_s or C_1 in addition to the OCI stretch falling within the 0–1500-cm⁻¹ region and the OCI torsion possibly being observable. Frequency, relative intensity, and polarization data are presented in Table I along with the proposed assignment based on C_1 symmetry overall but local C_s symmetry for the CF₃ group. These assignments were made by analogy to CF₃SO₂OH and CF₃SO₂F for many of the modes and FSO₂OCl^{3,42} for the modes involving the SOCI fragment.

The frequency region 725-1500 cm⁻¹ should contain three CF stretching modes, two SO_2 stretches, the SO(Cl) stretch, and the symmetric CF₃ deformation.⁴⁸ The antisymmetric and symmetric SO₂ stretches and symmetric CF₃ deformation are assigned at 1435 and 1241 cm⁻¹ and 771 cm⁻¹, respectively, by analogy to CF₃SO₂OH. The symmetric CF₃ stretch is assigned to the band at 1125 cm⁻¹ by analogy to CF₃SO₂OH (and CF₃SO₂F) and on the basis of the relatively high intensity. The two asymmetric CF3 stretches are assigned to weak shoulders at ~ 1226 cm⁻¹ on the symmetric SO₂ stretch at 1241 cm⁻¹ and \sim 1139 cm⁻¹ on the symmetric CF₃ stretch at 1125 cm⁻¹. The degenerate antisymmetric CF₃ stretch in C_{3v} local symmetry, from which these two modes are split in C_s symmetry, had been assigned to a weak band at ~1232 cm^{-1} on the side of the symmetric SO₂ stretch at 1244 cm^{-1} in CF₃SO₂OH. The remaining band at 821 cm⁻¹ must be assigned to the SO(Cl) stretch. In CF₃SO₂OH the analogous SO(H) stretch is much higher at 930 cm⁻¹, but in FSO₂OCl the SO(Cl) stretch is at 856 cm⁻¹ in satisfactory agreement with 821 cm⁻¹ and of comparable relative intensity and polarization.49

(46) Lowering the C_{3v} symmetry of the SO₃ segment of the CF₃SO₃⁻ ion to the C, symmetry of the SO₂ group in XSO₂Y splits $\nu_d(SO_3)$ into $\nu_i(SO_2)$ and $\nu_{as}(SO_2)$. Extending to $\nu_d(SO_3)$ in CF₃SO₃⁻ the concept that $\nu_{a-}(SO_2)$ and $\nu_{as}(SO_2)$ and their average in an XSO₂Y system increase with the electronegativity of Y at constant X²⁹ suggests the sequence CH₃-SO₃⁻ 1193 cm⁻¹, CCl₃SO₃⁻ 1250 cm⁻¹, and CF₃SO₃⁻ 1285 cm⁻¹ using the Raman data of MDCT for Na[CX₃SO₃]. However, both BBB and MDCT assign $\nu_d(SO_3) < 1200$ cm⁻¹ and $\nu_d(CF_3) > 1200$ cm⁻¹ in the CF₃SO₃⁻ ion. For CF₃SO₂F and CF₃SO₂OH, $\nu_{as}(SO_2)$ is more intense than $\nu_d(CF_3)$ in our Raman spectra, consistent with the 1285-cm⁻¹ band being more intense than the 1188-cm⁻¹ band in the Raman spectra of MDCT for Na[CF₃SO₃]. Although BBB do list $\nu_d(CF_3) > \nu_d(SO_3)$ in their Table 3, they have found in their normal-coordinate analysis that either $\nu_d(CF_3) > \nu_d(SO_3)$ or the reverse is in good agreement with frequencies calculated from two different chemically plausible sets of force constants. We consider that the weight of the evidence presented here favors $\nu_d(CF_3) < \nu_d(SO_3)$ for the CF₃SO₃⁻ ion.

(47) The original assignment of MDCT has the following three cases where a single band or a system of two overlapping bands assigned to the overlap for an A₁ mode and an E mode has a disturbingly high depolarization ratio: δ₁(SO₃) and δ_d(SO₃) at 580 cm⁻¹ with 0.88 in CF₃SO₃⁻; δ₅(SO₃) and δ_d(SO₃) at 548 cm⁻¹ with 1.08 in CCl₃SO₃⁻; and 2ν₅(CCl₃) and ν₆₀(CCl₃) at 829/814 cm⁻¹ with 0.94 in CCl₃SO₃⁻; and 2ν₅(CCl₃) and ν₆₀(CCl₃) at 829/814 cm⁻¹ with 0.94 in CCl₃SO₃⁻. The assignment shown in Table III does retain the third problem since 829 cm⁻¹ is now ν(CS)A₁ and 814 cm⁻¹ is ν₆₀(CCl₃)E. However, the first two difficulties are removed. In addition the low intensity of the Raman band at 621 cm⁻¹ in Na[CCl₃SO₃] is surprising for its original assignment to ν(CS) by MDCT but plausible for δ₆(SO₃) as assigned in Table III.
(48) For a CF₃S group of local C, symmetry it is reasonable that the symmetric strain the symmetric strain s

(48) For a CF₃S group of local C_s symmetry it is reasonable that the symmetric CF₃ stretching, symmetric CF₃ (umbrella) deformation and CS stretching symmetry coordinates may couple strongly to form a complicated normal coordinate as in CF₃SO₃^{-34,35} For CF₃SO₂OCI there is probably no normal mode that is a symmetric CF₃ (umbrella) deformation group frequency.^{35,36}

The frequency region 400–725 cm⁻¹ by analogy to CF₃S-O₂OH and FSO₂OCl would contain the OCl stretch, the SO₂ bend and rock, and two CF₃ deformations. The most intense band in the Raman spectrum of CF₃SO₂OCl at 685 cm⁻¹ is assigned to the OCl stretch in good agreement with 706 cm⁻¹ for that mode in FSO₂OCl.⁴⁹ The band at 594 cm⁻¹ for CF₃SO₂OCl is assigned to the SO₂ bend. The SO₂ bends in CF₃SO₂F and CF₃SO₂OH are at 611 and 620 cm⁻¹, respectively, and all three bands have similar band shapes. The SO₂ bend in FSO₂OCl is at 573 cm⁻¹ with comparable relative intensity to the 594-cm⁻¹ band of CF₃SO₂OCl.

The two CF₃ deformations, of A" and A' symmetry in C_s , are assigned at 569 and 556 cm⁻¹. These two bands have shapes similar to that of the 570-cm⁻¹ band in CF₃SO₂OH assigned to the degenerate CF₃ deformation in C_{3v} local symmetry which would split under C_s symmetry. The fact that the 569-cm⁻¹ band appears to be depolarized supports retention of local C_s symmetry by the CF₃ group. The SO₂ rock is assigned to the band at 499 cm⁻¹ in CF₃SO₂OCl. The corresponding bands in CF₃SO₂F, CF₃SO₂OH, and FSO₂OCl are at 463, 478, and 534 cm⁻¹, respectively. The 499-cm⁻¹ band of CF₃SO₂OCl and the 534-cm⁻¹ band of FSO₂OCl have comparable relative intensities.

The band for CF₃SO₂OCl at 411 cm⁻¹ is the second most intense band in the Raman spectrum and the most intense band below 500 cm⁻¹. The 411-cm⁻¹ band of CF₃SO₂OCl is assigned to the SO(Cl) wag by analogy to FSO₂Cl where the second most intense band in the Raman spectrum and the most intense band below 500 cm⁻¹ at 363 cm⁻¹ is assigned as the SO(Cl) wag.⁵⁰

Seven bands in the region 0-400 cm⁻¹ complete the Raman spectrum of liquid CF₃SO₂OCl. The modes remaining to be assigned are the SCF₃ wag, the SO₂ twist, two CF₃ rocks, the CS stretch, the SOCl bend, and the OCl torsion. Reduction of the local symmetry of the CF₃ group from C_{3v} to C_s splits the degeneracy of the CF₃ rock and may dramatically change the Raman intensity. For CF₃ groups bonded to sulfur, reduction of local symmetry from C_{3v} to C_s replaces a weak depolarized band in the 215-310-cm⁻¹ region^{32a,c,37a} by a medium to very strong polarized band near 300 cm⁻¹ and a weak depolarized band near 200 cm^{-1, 32b,d} Thus a CF₃ rock, the SCF₃ wag, and CS stretch are candidates for the three prominent bands between 300 and 350 cm⁻¹ in the Raman

⁽⁴⁹⁾ In CF₃SO₂OH ν(SO) and ν(OH) would be essentially uncoupled. However, as pointed out by a referce, in CF₃SO₂OCl ν(SO) and ν(OCl) would probably couple strongly so that the 821- and 685-cm⁻¹ bands would be more accurately described by ν_{as}(SOCl) and ν_a(SOCl), respectively. An analogous situation probably occurs in FSO₂OCl.

spectively. An analogous situation probably occurs in FSO₂OCI.
 (50) A referee has suggested that the 411-cm⁻¹ band in CF₃SO₂OCI be assigned to δ(SOCI) rather than δ(SCF₃ wag). The high intensity of the bands at 411 and 363 cm⁻¹ in CF₃SO₂OCI and FSO₂OCI, respectively, makes such an assignment for CF₃SO₂OCI and its extension to the FSO₂OC series deta of Aubte and Devolution 3 ditractive. We are the such as the the FSO₂OX series data of Aubke and DesMarteau³ attractive. We believe the two most intense bands below 500 cm⁻¹ in the Raman spectra of the liquid FSO₂OX compounds are most reasonably assigned as the $\delta(SO(X) \text{ wag})$ and the $\delta(SOX)$ modes. The frequencies (cm⁻¹) and relative intensities in parentheses for FSO_2OX , where X = F, Cl, or Br, and for CF3SO2OCI are as follows (all bands are polarized): FSO2OF 395 (40), 242 (30); FSO₂OCl 363 (80), 212 (25); FSO₂OBr 317 (100), 175 (40); CF₃SO₂OCl 411 (57), 211 (20). Since the δ (SOX) mode should have the larger extent of X atom motion, its frequency should show the larger percentage decrease with increasing mass of the X atom providing the force constants do not change in such a way as to alter this expected trend. Consequently, the lower frequency band is selected as $\delta(SOX)$ or at least as having the larger contribution from an SOX bending motion. Then the higher frequency band is selected as $\delta(SO(X))$ wag). We recognize that complex coupling effects may be operating here and that the higher frequency band might have a larger SOX bending contribution than the lower frequency band. It is also possible that there is no mode which has SOX bending as its major contributor but that the referee's description is closer to the truth than ours. However, with the current state of information we prefer to retain the assignment consistent with the FSO₂OX assignments of Aubke and DesMarteau³ rather than revise the FSO₂OX assignments without results from a normal-coordinate analysis to provide additional insight.

spectrum of liquid CF₃SO₂OCl.

The band at 336 cm⁻¹ for CF₃SO₂OCl is assigned to the SCF₁ wag by analogy to this same assignment for the bands at 333 and 340 cm⁻¹ in CF₃SO₂F and CF₃SO₂OH, respectively.⁴³ The SO₂ twist for CF_3SO_2OCI either is too weak to observe or is degenerate with the SCF_3 wag at 336 cm⁻¹. The SO_2 twist in FSO₂OCl is assigned to a weak band at 389 cm⁻¹. The band at 302 cm⁻¹ for CF₃SO₂OCl is assigned to the CS stretch by analogy to CF₃SO₂F and CF₃SO₂OH where the CS stretch is assigned at 301 and 312 cm^{-1} , respectively.^{38,43} Then the band at 321 cm⁻¹ in CF₃SO₂OCl can be assigned to the CF_3 rock of A' symmetry for C_s . It would, of course, be possible to reverse our CS stretch and CF₃ rock assignments. The bands are of almost equal intensity (the third and fourth most intense bands in the Raman spectrum) with the 302-cm⁻¹ band being slightly more intense and having the lower depolarization ratio. It seems reasonable for the CS stretch, 38,43 which would be polarized in any case, to have a lower depolarization ratio than the CF₃ rock which is depolarized in C_{3v} local symmetry but becomes polarized under C_s local symmetry. Consequently, we have chosen this assignment.⁵¹

(51) In CF₃SO₂OCl, coupling could occur among three modes giving bands between 300 and 350 cm⁻¹ so the situation could be even more complex than in CF₃SO₂F and CF₃SO₂OH. However, in the absence of further information we prefer to retain our description of $\delta(SCF_3)$ and $\nu(C-S)$ with proper qualification of the later³⁸ as done in CF₃SO₂F and CF₃S-O₂OH⁴³ and list the band at 321 cm⁻¹ as a CF₃ rock.

The band at 211 cm⁻¹ in CF₃SO₂OCl seems too intense for a CF₃ rock of A" symmetry under C_s local symmetry and is assigned to the SOCI bend.⁵⁰ A band at 212 cm⁻¹ with very similar relative intensity is so assigned in FSO₂OC1.⁵⁰ Either the band at 184 cm⁻¹ or the shoulder at ~ 198 cm⁻¹ must be the CF₃ rock. The shoulder on the Rayleigh line near 90 cm⁻¹ must surely be a torsion. Since no evidence for a band assignable to the CF₃ torsion was obtained for CF₃SO₂F or CF_3SO_2OH , we assume the CF_3 torsion is too weak to observe and assign 90 cm^{-1} as the OCl torsion. Although no OCl torsion has been found in FSO₂OCl, an OF torsion is assigned at 137 cm⁻¹ in $FSO_2OF^{3,42}$. Since the 184-cm⁻¹ band is near twice 90 cm⁻¹ and $\Delta \nu = 2$ transitions for torsions may be more prominent than $\Delta v = 1$ transitions,⁵² we tentatively assign the 184-cm⁻¹ band as 2 $\tau_{\rm OCl}$. Then the shoulder near 198 cm⁻¹ remains to be assigned to the CF₃ rock of A" symmetry for local C_s symmetry of the CF₃ group in CF₃SO₂OCl.

Acknowledgment. Support of this research by the National Science Foundation is gratefully acknowledged. D.D.D. thanks the 3M Co. for a generous sample of CF_3SO_2F .

Registry No. CF₃SO₂OCl, 65597-24-2; CF₃SO₂OBr, 70142-16-4; CF₃SO₂OCF₃, 3582-05-6; CF₃SO₂OSO₂OCF₃, 72214-10-9; CF₃SO₂F, 335-05-7; CF₃SO₂OH, 1493-13-6.

Contribution from the Chemical Research Institute of Nonaqueous Solutions, Tohoku University, Katahira, Sendai 980, Japan

Infrared and Raman Spectra of Ammonium, Potassium, Rubidium, and **Cesium Metavanadates**

SHINJI ONODERA and YUSAKU IKEGAMI*

Received August 31, 1979

The infrared and Raman spectra of five metavanadates, MVO3 (M = NH4, ND4, K, Rb, Cs), have been measured. The observed bands for KVO₃ in the aqueous solution were assigned to the vibrations of the $(VO_3)_n^n$ ionic chain with $C_{2\nu}$ symmetry. The vibrational assignments to the chain in the crystalline salts were given tentatively by taking into consideration a different arrangement of atoms in the chain from that in aqueous solution. The internal vibrations of the ammonium ions in NH₄VO₃ and ND_4VO_3 at 77 and 100 K were also discussed. The rule of alternative inhibition has been adapted to the librations of the ammonium ions at 77 K.

In the previous paper,¹ the far-infrared spectra of five metavanadates, MVO_3 (M = NH₄, ND₄, K, Rb, Cs), were reported with the discussions concerning the bending vibrations of the VO₃ anion chain, the cation translations, and the NH_4^+ librations. It was suggested that these salts have similar force constants for the translational modes of the cations. According to the X-ray analyses of NH_4VO_3 and KVO_3 ,² the unit cell in a crystal with space group $Pmab-D_{2h}^{11}$ contains four MVO₃ molecules including four equivalent cations, and the VO₃ anions constitute a chain arrangement in which the VO₄ groups are tetrahedral. Few vibrational studies for the anion chain are found in the literature.^{3,4}

W. P. Ibid. 1967, 905.

In order to investigate the fundamental vibrations of the anion chain, we measured the infrared and Raman spectra of the powdered salts at room temperature. Since the stereochemical structure of the VO₄ tetrahedral chain in aqueous solution has been assumed to be different from that in crystal,⁵ the spectra of the aqueous solution were also examined for KVO_3 , which is soluble in water. This paper deals with the assignments for these observed bands. Internal motions and librations of the ammonium ions are also discussed for the spectra of NH₄VO₃ and ND₄VO₃ measured at room and low temperatures.

Experimental Section

The materials measured were NH4VO3, ND4VO3, KVO3, RbVO3, and CsVO₃, all of which were prepared as previously reported.¹ Infrared spectra were measured with a Perkin-Elmer Model 125

⁽a) Durig, J. R.; Bucy, W. E.; Carreira, L. A.; Wurrey, C. J. J. Chem. Phys. 1974, 60, 1754. (b) Durig, J. R.; Bucy, W. E.; Wurrey, C. J. J. Chem. Phys. 1974, 60, 3293. (c) Durig, J. R.; Bucy, W. E.; Wurrey, C. J.; Carreira, L. A. J. Phys. Chem. 1975, 79, 988. (52)

⁽¹⁾

Onodera, S.; Ikegami, Y. Inorg. Chem. 1979, 18, 466. Evans, H. T., Jr. Z. Kristallogr., Kristallgeom., Kristallphys., Kris-(2)tallchem. 1960, 114, 257.

Frederickson, L. D., Jr.; Hausen, D. M. Anal. Chem. 1963, 35, 818. Griffith, W. P.; Wickins, T. D. J. Chem. Soc. A 1966, 1087. Griffith, (4)

Wells, A. F. "Structural Inorganic Chemistry", 4th ed.; Clarendon (5) Press: Oxford, 1975; p 470.