organotin hydrides increases with increasing numbers of organic groups attached to the tin atom.¹⁵ The halostannanes $\overline{S}nH_3X$, $X = Cl$, Br, or I, however, are much less stable than $SnH₄$ and decompose upon sublimation at -35 °C.¹⁶ Therefore, it was of some interest to attempt the preparation of CF_3SnH_3 as the trifluoromethyl group can be likened to an organic group since the linkage is through carbon, yet the ligand is very electronegative (more electronegative than $Cl¹⁷$). The experimental evidence indicates that a volatile tin compound is formed, a compound that decomposes faster than $SnH₄$ and has a chemical shift more deshielded than that of ClSnH₃ (δ (SnH₃Cl) 6.93¹⁶). Taken with the mass spectral data, which indicate $CF_3SnH_n^+$, $SnFH_n^+$, and SnH_n^+ , these results argue strongly for the formation of CF_3SnH_3 , but the compound is clearly less stable than stannane. Presumably the fact that the (trifluoromethy1)germanium hydrides are easily synthesized and stable for weeks at ambient temperatures^{10,18} while the tin-containing analogues are not is a reflection of the relative electronegativities of the two central elements.

- **(15) R. C. Poller, "Chemistry** of **Organotin Compounds",** Logos **Press, London, 1970.**
- **(16) J. M. Bellarna and R. A. Gsell,** *Inorg. Nucl. Chem. Lett.,* **7, 365 (1971).**
-
- **(17) J. E. Huheey,** *J. Phys. Chem.,* **69, 3284 (1965). (18) L. C. Krisher, W. A. Watson, and J. A. Morrison,** *J. Chem. Phys.,* **61, 3429 (1974).**

In summary the sealed-tube reactions between $SnBr₄$ and (CF_3) ₂Hg are a very convenient method of preparing the (trifluoromethyl)tin bromides CF_3SnBr_3 and $(CF_3)_2SnBr_2$ if the appropriate times and temperatures are used. However, outside of the relatively narrow temperature ranges established here the yields drop dramatically. Further substitution of trifluoromethyl groups is also indicated, but the trisubstituted compound decomposes almost immediately. The reaction of the bromides with stoichiometric amounts of $CH₃Li$ or $(CH₃)$, Cd converts these compounds to the mixed methyl-(trifluoromethy1)tin compounds virtually quantitatively. On the basis of the yields and availability of the reagents, the present preparation of the alkyl(perfluoromethy1) tin compounds is the most convenient synthesis known. (Trifluoromethyl)stannane appears to be much less stable than $SnH₄$, as are the stannyl halides.

Acknowledgment. The financial contributions of the Research Corp. and the University of Illinois Research Board and the aid of a Faculty Summer Fellowship are gratefully acknowledged. Some of the preliminary experiments were performed by Steven Mendak.

Registry No. CF₃SnBr₃, 65094-19-1; (CF₃)₂SnBr₂, 65094-20-4; $CF₃Sn(CH₃)₃$, 754-25-6; $(CF₃)₂Sn(CH₃)₂$, 65059-36-1; $Sn(CH₃)₄$, 594-27-4; CF₃SnBr(CH₃)₂, 72244-71-4; CF₃SnBr₂CH₃, 72251-81-1; **(CF3)2H9, 371-76-6; SnBr,, 7789-67-5; (CH3)2Cd, 506-82-1; CH3Li, 917-54-4; CF3SnH3, 72244-72-5; SnH4, 2406-52-2.**

> **Contribution from the Department of Chemistry, Kansas State University, Manhattan, Kansas 66506**

Synthesis and Properties of Chlorine(1) and Bromine(1) Trifluoromethanesulfonates and Raman Spectra of CF_3SO_2X **(X = F, OH, OCI)**

YUTAKA KATSUHARA, ROBERT M. HAMMAKER, and DARRYL D. DESMARTEAU*^{1,2}

Received July 9, *1979*

The synthesis and characterization of the new hypohalites CF₃SO₃Cl and CF₃SO₃Br are described. Both compounds are thermally unstable at 22 °C, decomposing to CF_3Cl and SO_3 for the hypochlorite and $CF_3SO_3CF_3$, $CF_3SO_2OSP_3$, SO₃ and Br₂ for the hypobromite. The hypochlorite is prepared by reaction of CF₃SO₃H with ClF and the hypobromite by reaction of CF₃SO₃Cl with bromine. The low-temperature Raman spectrum of CF₃SO₃Cl suggests C₁ symmetry and **assignments of 20 of the expected 21 fundamentals are given. These assignments were aided by an analysis of the Raman** spectra of CF₃SO₂F and CF₃SO₂OH, which are reported for the first time.

Introduction

Halogen derivatives of strong oxyacids contain the halogen in a formal positive oxidation state.^{3,4} These $+1$ compounds are then very useful sources of the electrophiles Cl⁺, Br⁺, and I+. The potential of such compounds is apparent by considering one of the better characterized examples, BrOSO₂F. This reactive compound undergoes electrophilic addition to olefins, substitutive electrophilic dehalogenation reactions with various chlorides and bromides, and one-electron oxidation by Br⁺ with metals and serves as a source of Br⁺ in the formation
of polyhalogen cations.³
BrOSO₂F + CH₂CF₂ → BrCH₂CF₂OSO₂F of polyhalogen cations. 3

Bylaogen cations.
\n
$$
BrOSO_2F + CH_2CF_2 \rightarrow BrCH_2CF_2OSO_2F
$$
\n
$$
2BrOSO_2F + FCCI_3 \rightarrow 2BrCl + FCCI(OSO_2F)_2
$$
\n
$$
3BrOSO_2F + Au \rightarrow Au(SO_3F)_3 + \frac{3}{2}Br_2
$$
\n
$$
BrOSO_2F + Cl_2 \rightarrow BrCl_2^+ + FSO_3^-
$$

$$
BrOSO_2F + Cl_2 \rightarrow BrCl_2^+ + FSO_3^-
$$

Clearly any new compound with properties similar to those

-
- **(1) To whom correspondence should be addressed. (2) Alfred P. Sloan Fellow, 1975-1977. (3) Aubke, F.; DesMarteau, D. D.** *Fluorine Chem. Rev.* **1977,** *8,* **73.**
- **(4) Schack, C. J.; Christe,** K. **0.** *Isr. J. Chem.* **1978,** *17,* **20.**

0020-1669/80/1319-0607\$01.00/0 *0* **1980 American Chemical Society**

of $BrOSO₂F$ would be immediately useful in synthesis.

Halogen(1) derivatives of several strong monoprotic acids have been prepared. These include $HOSO_2F$ (Cl,⁵ Br,⁶ I⁷), $HOCIO₃ (Cl⁸, Br⁹), HOSeF₅ (Cl, Br, I¹⁰), HOTeF₅ (Cl, Br,$ I ¹¹ and $HONO₂ (Cl¹² Br¹³)$. Not all of these compounds have good thermal stability and none have been investigated to the same extent as $BrOSO_2F$. One very strong acid, for which only the iodine compound is known, is $CF₃SO₂OH¹⁴$ This acid and its organic derivatives (triflates) have been extensively investigated since its discovery in 1954.^{15,16}

- (5) Gilbreath, W. P.; Cady, G. H. *Inorg. Chem.* **1963**, 2, 496. Schack, C.

J.; Wilson, R. D. *Ibid.* **1970**, 9, 311. Hardin, C. V.; Ratcliffe, C. T.;

Anderson, L. R.; Fox, W. B. *Ibid.* **1970**, 9, 1938.

(6) Roberts, J.
-
-
-
- (7) Aubke, F.; Cady, G. H. *Inorg. Chem.* 1965, 4, 269.
(8) Schack, C. J.; Pilipovich, D. *Inorg. Chem.* 1970, 9, 1387.
(9) Schack, C. J.; Christe, K. O.; Pilipovich, D.; Wilson, R. D. *Inorg. Chem.* **1971, 10, 1078.**
- **(10) Seppelt,** K. *Chem. Ber.* **1973,** *106,* **157.**
- (11) **Seppelt,** K. *Chem. Ber.* **1973,** *106,* **1920. (12) Schack, C. J.** *Inorg. Chem.* **1967,** *6,* **1938.**
-
- **(13) Schmeisser, M.; Talinger, L.** *Chem. Ber.* **1961,** *94,* **1533. (14) Dalziel, J.** R.; **Aubke, F.** *Inorg. Chem.* **1973,** *12,* **2707.**

However, due to the lack of a suitable strong, synthetically useful oxidizing agent containing the $CF₃SO₃$ group, the synthesis of many desired compounds is difficult or impossible at the present time. We therefore undertook the synthesis of $BrOSO₂CF₃$ and ClOSO₂CF₃.¹⁷

This paper reports the synthesis and characterization of $XOSO_2CF_3$ (X = Cl and Br) and an analysis of the Raman spectrum of the hypochlorite. No previous assignments for a simple covalent $CF₃SO₃$ derivative were available, and the related compounds $CF₃SO₂F$ and $CF₃SO₂OH$ were also examined. Previous attempts to obtain the Raman spectrum of CF3S03H were unsuccessful due to very strong fluorescence. This problem was avoided in our work by careful elimination of organic impurities.

Experimental Section

General Procedure. All work was carried out in Pyrex and stainless steel vacuum systems equipped with glass-Teflon or stainless steel valves. Pressures were measured with a Wallace and Tiernan differential pressure gauge, Series 1500. Temperatures were measured by using a digital copper-constantan thermocouple. Quantities of reactants and products were measured either by direct weighing or by *PVT* measurements with the assumption of ideal gas behavior.

Routine IR spectra were taken on a Perkin-Elmer 337 spectrometer at 5-100 torr. A 10-cm Pyrex glass cell fitted with AgCl windows was employed. IR spectra for assignment were taken on a Perkin-Elmer 180 spectrometer at 5-15 torr. Raman spectra were taken with a **Spex** 14018 double monochromator with photon-counting detection. Excitation was via the 515.4-nm line of an *Ar'* ion laser using 150-350 mW of power. Depolarization ratios were determined by method IV as described by Claassen et al.¹⁸ A low-temperature glass cell similar to that described by Brown et al. was used to record the low-temperature spectra.¹⁹ The cell was cleaned thoroughly with $N_{a_2}Cr_2O_7/H_2SO_4$ before use with CF_3SO_3H . No hydrocarbon materials were allowed to contact the sample area.

Unless otherwise noted, NMR spectra were recorded on a Varian XL-100-15 spectrometer using 20-15 mol % solutions in CFC1,. Spectra were at 94.1 MHz for F with CFC l_3 as an internal reference.

Molecular weights were determined by vapor density measurements using a calibrated Pyrex bulb fitted with a glass-Teflon valve. Determinations were made on successive fractions of each sample.

Melting points were taken in a Pyrex tube fitted with a glass-Teflon valve. The compound was pumped under vacuum onto the wall of the tube cooled by liquid N_2 forming a crystalline ring. The tube was placed in an ethanol bath, which was cooled to -112 °C prior to the measurement and then warmed slowly with proper agitation.

Vapor pressures and boiling points of the products were measured by a static method. Equations describing pressure as a function of temperature were obtained by a least-squares fit of the data to both linear and quadratic equations, and the best fit **is** reported.

For further purifications, the reaction products were separated via GLC on a Victoreen Series 4000 gas chromatograph equipped for gas injection, TCD, and low-temperature collection. A $2 \text{ ft} \times \frac{3}{8} \text{ in.}$ column packed with 40% Halocarbon 11-21 polymer oil on acidwashed Chromosorb P was used in most cases.

Reagents. $CF₃SO₃H$ was obtained from Aldrich Chemical Co. and was purified by distillation. Bromine was dried over P₄O₁₀ and distilled before using. Chlorine monofluoride was prepared by heating equimolar amounts of Cl_2 and F_2 at 250 °C in a Monel bomb and was taken out of the bomb at -111 °C to prevent contamination by $CIF₃$ and unreacted $Cl₂$. Fluorine was obtained from Air Products and was passed through a NaF scrubber before use.

Preparation of CF₃SO₂OCI. The compound was prepared many times in varying amounts. A typical procedure is described. CF₃SO₃H was vacuum transferred through a short glass connection into a \sim 15 mL Kel-F reactor cooled to -196 °C and fitted with a 304 stainless

steel valve. The exact amount of acid was determined by weighing the container before and after transfer. The reactor containing 10.0 mmol of acid was then warmed to 22 \degree C so that the acid liquefied. It was then cooled to -196 °C and ClF (11.0 mmol) was added from an all stainless steel vacuum line. The mixture was then warmed slowly from -111 to -78 °C (\sim 6 h) and held at -78 °C until all the solid acid was gone and the contents consisted of two liquid layers (~ 8) h). The lower layer, canary yellow in color, is CF₃SO₂OCl and the upper colorless layer is HF. The contents were then pumped on at -78 °C into a Kel-F trap at -196 °C. When essentially no further volatile material was collected, the remaining pale yellow liquid was essentially pure CF_3SO_2OCl . Measurement of the HF removed by weight, after removing other volatiles at -111 °C, indicated the reaction was quantitative within experimental error.

 $CF₃SO₂OCl:$ pale yellow to colorless crystals, mp -84.0 to -83.0 ^oC; ¹⁹F NMR (-40 °C neat) 73.5 (s) (external CFCI₃); Raman at ca. -78 °C, see Results and Discussion.

The decomposition of $CF₃SO₃Cl$ was carried out by attaching a Kel-F reactor to a glass vacuum system of 1250 mL volume. The CF₃SO₂OCl (2.23 mmol) was allowed to stand for 2 days, during which time the pressure increased to 48 torr. The contents of the line and reactor were then pumped into a trap at -196 °C and separated through traps at -111 and -196 °C. The -111 °C trap contained a white solid presumed to be $SO₃$ on the basis of its appearance and considerable experience in handling SO_3 , and the -196 $^{\circ}$ C trap contained 2.20 mmol of CF₃Cl (mol wt 105.1, calcd 104.5) with an IR spectrum indistinguishable from that of a pure, known sample of CF₃Cl.

Preparation of CF₃SO₂OBr. This compound was prepared many times and a typical procedure is described. Onto CF_3SO_2OCl (5.0 mmol) at -196 °C in a ~15-mL Kel-F reactor was condensed Br₂ (2.5 mmol) by vacuum transfer. The reactor was placed in a -60 ^oC bath and shaken by hand. Immediate evolution of Cl₂ was apparent and the liquid phase turned from yellow to a dark red-brown. The latter became more viscous with time and solidified after \sim 2 h. The reaction was then warmed to -20 °C with shaking. The liquid phase became wine red and the evolution of additional Cl_2 was evident. After 2 h, the reactor was cooled to -78 °C and pumped on through a trap at -196 °C. After a few minutes, the reactor was closed again, warmed to -20 °C for a few minutes, and recooled to -78 °C and pumping was continued for \sim 30 min. This resulted in a yellow crystalline solid at -78 °C and Cl₂ (2.5 mmol) in the trap. The latter was measured by reaction with a weighed amount of Hg.

 $CF₃SO₂OBr:$ yellow crystalline solid, wine red liquid, mp -27.0 to -26.0 °C; ¹⁹F NMR (-20 °C neat) 73.3 (s) (external CFCl₃); no Raman or IR spectra were successfully recorded.

Decomposition of CF_3SO_2OH (3.52 mmol) was carried out in the same way as CF_3SO_2OCl . After 20 h, no further pressure increase was noted (initial pressure increase was rapid). The contents of the line and reactor was then pumped into a trap at -196 °C. The total volatile material corresponded to 3.53 mmol. Some nonvolatile white solid $(SO₃)$ remained in the -196 °C trap. The volatiles were condensed onto Hg, and 1.76 mmol of $Br₂$ was removed. The remaining 1.77 mmol was separated by passing through traps at -80 and -196 OC. The -80 "C trap contained 0.18 mmol of a new compound identified as $CF_3SO_3SO_2OCF_3$. The -196 °C trap contained 1.56 mmol of $CF_3SO_2OCF_3$ and a trace of CF_3Br .

 $CF₃SO₂OCF₃$; bp 19.9 °C; mp -106.0 to -105.0 °C; mol wt found 218.7, calcd 218.0; IR 1465 **(s),** 1280 (sh, **s),** 1260 (vs), 1230 (vs), 1148 (sh, **s),** 1135 (vs), 955 **(s),** 790 (m), 760 (w), 607 (w), 540 (vw), 505 (vw) cm-I; "F NMR **4*** 74.3 (q, CF,S), **4*** 53.6 (q, OCF,) *(JFF* $= 3.5$ Hz); $\Delta H_{\text{vap}} = 6.99$ kcal/mol; $\Delta S_{\text{vap}} = 23.9$ eu; log *P* (torr) = 8.0958 - 1528.1/T. These data are in substantial agreement with that reported by Noftle and Cady (bp 21.1 °C, mp \sim -108.2 °C).²⁰

 $CF₃SO₂OSO₂OCF₃$: mol wt found 297.9, calcd 298.0; IR 1485 **(s),** 1464 **(s),** 1290 (s), 1270 (vs), 1250 (vs), 1151 (vs), 1143 (sh, **s),** 974 **(s),** 810 (m), 790 (vs), 770 **(s),** 750 (sh, m), 615 (m), 595 (m), 561 (w), 539 (vw), 510 (m) cm⁻¹; ¹⁹F NMR ϕ ^{*} 72.9 (s, CF₃S), ϕ ^{*} 56.1 **(s,** OCF,).

Results and Discussion

Synthesis and Properties of CF_3SO_2OX **(** $X = CI$ **,** Br **).** The new hypohalites CF_3SO_2OCl and CF_3SO_2OH are prepared

⁽¹⁵⁾ Howells, R. D.; McCown, J. D. *Chem. Rev.* **1977,** *77,* **69.**

⁽¹⁶⁾ Hendrickson, J. B.; Sternback, D. D.; Bair, **K.** W. *Acc. Chem. Res.*

^{1977,} *10,* 306. (17) For a preliminary report on the synthesis of CF_3SO_2OCl , see: Des-

Marteau, D. D. J. Am. Chem. Soc. 1978, 100, 340.
(18) Claassen, H. H.; Selig, H.; Shamir, J. Appl. Spectrosc., 1969, 23, 8.
(19) Brown, C. W.; Hopkins, A. G.; Daly, F. P. Appl. Spectrosc. 1974, 28,

Chlorine and Bromine Trifluoromethanesulfonates

in high yield by the following low temperature reactions.

lorine and Bromine Trifluoromethanesulfonates
high yield by the following low temperature reactions

$$
CF_3SO_3H + CIF \xrightarrow{-78 \text{ °C}} CF_3SO_2OCl + HF
$$

 $2CF_3SO_2OCl + Br_2 \xrightarrow{-60, -20 \text{ °C}} 2CF_3SO_2OBr + Cl_2$
the arc thermally unstable at 22 °C with CF₃SO₂OBr
₃SO₂OCl. The thermal decomposition is straightforward

Both are thermally unstable at 22 °C with $CF_3SO_2OR \ll$ $CF₃SO₂OC1$. The thermal decomposition is straightforward for the hypochlorite, yielding CF_3Cl and SO_3 as the only products. OCI + Br₂ $\xrightarrow{2C}$ 2CF₃SO₂OE
rmally unstable at 22 °C with CF₃
The thermal decomposition is strainchlorite, yielding CF₃Cl and SO₃
CF₃SO₂OCI $\xrightarrow{22 \text{ °C}}$ CF₃Cl + SO₃
osition is mildly exothermic as is

$$
CF_3SO_2OCl \xrightarrow{22 \text{ °C}} CF_3Cl + SO_3
$$

The decomposition is mildly exothermic as is evident when a pure liquid sample of CF_3SO_2OCl is warmed to 22 °C in a Kel-F container. After a short time, the nearly colorless liquid begins to reflux.

The decomposition of CF₃SO₂OBr is more complex. Essentially no CF_3Br is detected and the products are SO_3 ,

$$
CF3SO2OCF3, CF3SO2OSO2OCF3, and Br2.
$$

CF₃SO₂OBr $\rightarrow CF_3SO_2OCF_3$ (90%),
CF₃SO₂OSO₂OCF₃ (10%), SO₃, Br₂ (100%)

This decomposition may initially form CF_3Br and SO_3 , which are utilized in subsequent reactions to form the observed products. CF₃SO₂OBr \rightarrow CF₃Br + SO₃

$$
CF3SO2OBr \rightarrow CF3Br + SO3
$$

CF₃Br + CF₃SO₂OBr \rightarrow Br₂ + CF₃SO₂OCF₃
\n
$$
\xrightarrow{SO3} CF3SO2OSO2OCF3
$$

The formation of $CF_3SO_2OCF_3$ in this way has been demonstrated independently.²¹ On the other hand, CF_3Cl has been shown not to react with $CF₃SO₂OCl²¹$. Thus the two decompositions are probably analogous, but for CF_3SO_2OBr the primary decomposition products may undergo secondary reactions.

The three halogen(I) derivatives of $CF₃SO₃H$ form an interesting series. The iodine compound is a relatively high melting solid (mp 122 °C) and is said to be thermally stable to 170 $^{\circ}C^{14}$. Clearly this stability, when compared to CF₃S- $O₂OCl$ and $CF₃SO₂OHr$, is high and must be due to stabilization via polymerization as suggested by Dalziel and Aubke from their IR spectra.¹⁴ The ultimate thermal decomposition of CF_3SO_2O1 is similar to that of CF_3SO_2OH . ng series. The iodine compound is a relatively g solid (mp 122 °C) and is said to be thermally st °C¹⁴. Clearly this stability, when compared to C
1 and CF₃SO₂OBr, is high and must be due to sta via polymerization a

$$
2CF3SO2OI \xrightarrow{170 °C} I2 + SO3 + CF3SO2OCF3
$$

This polymerization in the case of the iodine compound renders the compound less useful for synthetic purposes.

The reactivity of CF_3SO_2OX (X = Cl, Br) is high. They add to a variety of olefins by a stereospecific cis addition²² and undergo substitutive electrophilic dehalogenation reactions like $FSO₂OBr$ with a variety of organic²¹ and inorganic substrates.²³ As was anticipated, many new trifluoromethanesulfonates can be prepared and the ultimate scope of this reaction is under active investigation. In all respects, the reactivity of CF_3SO_2OX (X = Cl, Br) appears to parallel that of FSO₂OBr. In the first synthesis of FSO₂OBr from $S_2O_6F_2$ and $Br₂$, the compound was described as a red-black liquid. This was subsequently found to be due to a bromine impurity and probably formation of the unstable Br_3OSO_2F .^{6,24} Bro-

(23) Johri, K.; Katsuhara, Y.; DesMarteau, D. D., to be submitted for publication. (24) Wilson, W. W.; Winfield, J. M.; Aubke, F. *J. Fluorine Chem.* **1976,** mine(1) trifluoromethanesulfonate is similar. When free of $Br₂$, it is a clear wine red liquid. When contaminated with small amounts of Br_2 , it is a dark red-brown liquid. In all probability, $CF_3SO_2OH_3$ is formed and is responsible for the striking color change.

Chlorine(1) trifluoromethanesulfonate is remarkably electrophilic. It is considerably more reactive than $FSO₂OC1$, undergoing reactions with many alkyl halides at low temperature whereas FSO₂OCl must be heated in some cases. With CF_2Cl_2 , CF_3SO_2OCl reacts above -50 °C, whereas FSO₂OCl required heating at 80 $^{\circ}$ C.^{4,25} Chlorine(I) trifluoromethanesulfonate even adds to SF_4 ,²³ whereas FSO_2 OCl was unreactive.²⁶ This greater reactivity may be due to a more pronounced C1+ character in the trifluoromethanesulfonate but no direct evidence can be presented for this at the present time.

The spectroscopic characterization of CF_3SO_2OH is limited at the present to its 19F NMR spectrum. Attempts to record the low-temperature Raman spectrum were unsuccessful due to the strong absorption of laser light by the colored compound. Wavelengths up to 620 nm were ineffective in surmounting this problem. Its infrared spectrum could not be recorded due to its instability and reactivity with window materials (KC1 or AgCl). For $CF₃SO₂OC1$ the low-temperature Raman spectrum was readily obtained and is discussed in the following section. The IR spectrum of $CF₃SO₂OC1$ was obtained at 22 ^oC, but decomposition and rapid attack of the window materials (KCl or AgC1) made the observed frequencies uncertain. This did not prove to be a problem, since 20 of 21 fundamentals were observed in the Raman spectrum.

Analysis of the Raman Spectra of CF_3SO_2X ($X = F$, OH, OCl). In order to assign the Raman spectrum of $CF₃SO₂OCI$, it was desirable to have available a related series of compounds. The only compounds for which any detailed studies had been attempted were various ionic salts of $CF₃SO₃⁻$ and several compounds such as $I(OSO_2CF_3)$ and $Rb[I(OSO_2CF_3)_4]^{14}$ The complexity of the observed spectra of the latter precluded comparison with the simple, covalent $CF₃SO₂OCl$, and large differences might be expected in going from a covalent $CF₃SO₂O-$ to $CF₃SO₃$. We therefore undertook an investigation of the Raman spectra of CF_3SO_2F and CF_3SO_2OH to aid in the assignment of CF₃SO₂OCl. In addition to aiding in the assignment of CF_3SO_2OCl , CF_3SO_2F and CF_3SO_2OH suggested a resolution for conflicting assignments for the $CF₃SO₃$ ion.

 $CF₃SO₂F$ and $CF₃SO₂OH$. CF₃SO₂F and CF₃SO₂OH, a pseudoisoelectronic pair differing in mass by only two units, have, as liquids, very similar Raman spectra from 0 to 1500 cm^{-1} (Figure 1). Frequency, relative intensity, and polarization data are presented in Table I along with the proposed assignment based on C_s symmetry overall but local C_{3v} symmetry for the CF_3 group. CF_3SO_2OH would have an $SO(H)$ stretch replacing the SF stretch of CF_3SO_2F and the additional stretching, bending and torsional modes of the OH group. However, the OH stretch would be outside the 0-1500-cm⁻¹ range and the OH torsion would probably be too weak and broad to observe. The OH bend might be expected in the 1000-1200-cm⁻¹ region by analogy to H_2SO_4 , CH_3SO_2OH , $FSO₂OH$, and $CISO₂OH²⁷$ and $SF₅OH²⁸$

The only band present in $CF₃SO₂OH$ with no counterpart for CF_3SO_2F , a polarized band at 1122 cm⁻¹, is assigned to the SOH bend. The symmetric and antisymmetric SO_2

(28) Seppelt, K. *Angew.* Chem., *Znt. Ed. Engl.* **1976,** *25,* **44.**

⁽²¹⁾ Katsuhara, Y.; DesMarteau, D. D. *J. Am.* Chem. *SOC.,* in press. (22) Katsuhara, Y.; DesMarteau, D. D. J. *Am.* Chem. *SOC.* **1979,101,** 1039.

^{7,} 245.

⁽²⁵⁾ Fokin, A. **V.;** Studnev, Y. N.; Rapkin, A. I.; Kuznetsova, L. D., *Zzu. Akad. Nauk SSSR, Ser. Khim.* **1974,** 1817. **(26)** Gilbreath, W. P. Ph.D. Thesis, University of Washington, 1962.

^{(27) (}a) Gillespie, R. J.; Robinson, E. A. Can. J. Chem. 1962, 40, 644. (b)
Savoie, R.; Giguere, P. A. Ibid. 1964, 42, 277. (c) Chackalackal, S. M.;
Stafford, F. E. J. Am. Chem. Soc. 1966, 88, 4815.

í.

Table II. Summary of Observed Frequencies (cm⁻¹) below 1500 cm⁻¹ for CF_3SO_2F and $CF_3SO_2OH^2$ Fundamentals

CF , SO , F	CF, SO, OH		CF_{1} SO, OD	description ^b and
Raman^d	IR	Raman^d	IR	symmetry ^c C_s
1467 dp	1420	1400 dp	1400	$\nu_{\rm as}(\text{SO}_2)$ A"
1270 p	1256	1244 p	1256	ν _s $(SO_2)A'$
\sim 1235 dp	1220	~1232?	1220	$\nu_{\rm d}$ (CF ₃)E
1140p	1156	\sim 1152?	1156	$\tilde{\nu_s}$ (CF ₃)A ₁
		1122 p		δ (SOH)A'
829 p	930	- 930 p	930	$\nu(SF)/\nu(SO(H))$ A'
771 p	778	775 p	778	δ _s $(CF_3)A_1$
611 p	622	620p	622	$\delta(SO_2 \text{ bend})$ A'
564 dp	572	570 dp	572.	$\delta_{\mathbf{d}}(CF_{\mathbf{a}})E$
488 wp	500	499 wp	500	δ (SF wag)/ δ (SO(H) wag)A'
463 dp		478 sh, dp		$\delta(SO, rock)A''$
333 wp		340 wp		δ (SCF ₃ wag)A'
not obsd or		not obsd or		
333 dp		340 dp		$\delta(SO_2$ twist)A"
301 p		312 p		ν (CS)A'
196 d		201 dp		$\rho(CF_3)E$

a For detailed information see Table I including its footnotes. Some discussion of the descriptions of some of the modes has been given elsewhere.^{35,38,43,48-51} ^c CF₃SO₂F and CF₃SO₂OH are assumed to possess C_s symmetry overall, but local C_{3v} symmetry for the CF₃ group. ^a Abbreviations are as follows: p, polarized; dp, depolarized; wp, weakly polarized.

stretches assigned at 1467 and 1270 cm⁻¹, respectively, for $CF₃SO₂F$ are higher than those for $CF₃SO₂OH$ at 1400 and 1244 cm⁻¹, respectively, due to the higher electronegativity of F over OH.²⁹ The CF₃ group, which should provide the F over $OH²⁹$ The CF₃ group, which should provide the remaining bands above 1000 cm⁻¹, is assumed to follow C_{3v} selection rules due to free rotation along the CS bond. The symmetric CF_3 stretch is assigned to the polarized band at 1140 cm⁻¹ in CF_3SO_2F and to the shoulder at \sim 1152 cm⁻¹ on the SOH bend at 1122 cm^{-1} in CF₃SO₂OH. The very weak depolarized shoulder at \sim 1235 cm⁻¹, on the symmetric SO₂ stretch at 1270 cm⁻¹, in CF_3SO_2F is assigned to the degenerate $CF₃$ stretch. Analogously, the degenerate $CF₃$ stretch is assigned to the weak band suggested to be present at \sim 1232 cm^{-1} , on the side of the symmetric SO_2 stretch at 1244 cm⁻¹, in a perpendicular polarization scan of $CF₃SO₂OH$.

The infrared data of Balicheva, Ligus, and Fialkov³⁰ for liquid CF_3SO_2OH and liquid CF_3SO_2OD near room temperature became consistent with our assignment by reversal of their CF stretch and symmetric SO_2 stretch assignments. Our assignment for the $1000-1500$ -cm⁻¹ region is summarized in Table II^{31}

The region $700-1000 \text{ cm}^{-1}$ is expected to contain only two modes. Several compounds with CF_3S groups have a strong polarized Raman band near 750 cm⁻¹.³²⁻³⁴ Although this band

Figure 1. Raman spectra of the liquid CF_3SO_2F at $-78 °C$ (A), CF₃SO₂OH at -20 °C (B), and CF₃SO₂OCl at -78 °C (C). The band near 1070 cm⁻¹ (C) marked with an asterisk is due to SO_3 impurity.

is usually labeled as a symmetric $CF₃$ deformation, normalcoordinate analyses of the $CF_3SO_3^-$ ion by both Miles, Doyle, Cooney, and Tobias³³ (MDCT) and Burger, Burczyk, and Blaschette³⁴ (BBB) show more CF_3 and CS stretching character in this mode than CF, deformation character. For both $CF₃SO₂F$ and $CF₃SO₂OH$, the most intense and highly polarized bands in the Raman spectra at 771 and 775 cm⁻¹, respectively, are labeled as the symmetric CF_3 deformation. However, in spite of the fact that we follow the usual practice of labeling a band as the symmetric CF_3 deformation, we believe that the mode responsible for the strong polarized Raman band near 775 cm^{-1} is a far more complex motion than a symmetric CF_3 (umbrella) deformation.³⁵ For CF_3SO_2OH

- $(Ag[CF_3SO_3])$
- (35) It is reasonable that the symmetric CF_3 stretching, symmetric CF_3 (umbrella) deformation, and CS stretching symmetry coordinates for (35) a CF₃S group of local C_{3v} symmetry may couple strongly in these compounds to form a normal coordinate similar to the result of BBB³⁴ for CF₃SO₃. It may well be that no CF₃S containing compound has any normal mode that is a symmetric CF₃ (umbrella) deformation group frequency in the sense of having 66% or more contribution to the cal-culated frequency from **one** diagonal force constant.36 (36) Fuhrer, H.; Kartha, **V.** B.; Kidd, **K.** G.; Kruger, P. J.; Mantsch, H. H.

NRC Bull. **1976,** *NO. 15,* 189-92.

⁽²⁹⁾ Fox, W. B.; Franz, G. *Inorg. Chem.* **1968,** *5,* 946. (30) Balicheva, T. G.; Ligus, V. I.; Fialkov, *Y. Y. Rum. J. Inorg. Chem. (Engl. Transl.)* **1973,** *18,* 1701. (30) Balicheva, T. G.; Ligus, V. I.; Fialkov, Y. Y. Russ. J. Inorg. Chem. (*Engl. Transl.*) 1973, 18, 1701.
(31) The absence of an IR band at \sim 1120 cm⁻¹ due to the SOH bend in

CF₃SO₂OH is most probably due to a different extent of hydrogen bonding and consequent different SOH bend frequency between room bonding and consequent different SOH bend frequency between room
temperature where the IR data were recorded and near -20 °C where the Raman spectra were recorded. If the local C_{3v} symmetry of the CF_3 group were broken to the extent that the degenerate CF_3 stretch were split, then an additional polarized Raman band would be expected in the 1100–1300-cm⁻¹ region. One might assign the 1122-cm⁻¹ polarized
Raman band in CF₃SO₂OH as an asymmetric CF₃ stretch of A' symmetry under *C,* symmetry rather than the **SOH** bend. But then it is difficult to understand why such a band is not observed for CF_3SO_2F if the cause of the band is the removal of the C_{3v} local symmetry of the CF3 group. It is, of course, possible that the local *C3,* symmetry of the CF3 group is broken but the band is too weak to **observe** or is **so** weakly \sim 3 gives be observed and so slightly shifted that it is not distinguishable from the bands at \sim 1232 and \sim 1235 cm⁻¹ for CF₃SO₂OH and CF₃SO₂F, respectively. However, we base our analysis on the assumpt CF_3 group retains its local C_{3v} symmetry in both compounds.

^{(32) (}a) Griffiths, J. E. Spectrochim. Acta, Part A 1967, 23, 2145 (CF₃SF₃).

(b) Carter, H. A.; Wang, C. S.; Shreeve, J. M. Spectrochim. Acta 1973, 29, 1479 (CF₃SCF₃, CF₃S(O)CF₃, CF₃SSCF₃). (c) Borrajo, J. E. L.; Aymonino, P. J. *J. Mol. Struct.* **1975,** *29,* 163 (CF3SH). (d) Kirschmerer, R. L.; Shreeve, J. M. *Inorg. Chem.* **1975, 14,** ²⁴³¹ (CF₃S(O)F, CF₃S(O)Cl). (e) Burger, H.; Pawelke, G.; Haas, A.;
Willner, H.; Downs, A. J. *Spectrochim. Acta, Part A* **1978**, 34, 287 ((SCF₃)₃N). (f) Holmes-Smith, R. D.; Stobart, S. R. *Inorg. Chem.*
1979, 18, 538 (SCF₃GeH₃, (SCF₃)₂GeH₂, SCF₃GeH₃GeH₃).
(33) Miles, M. G.; Doyle, G.; Cooney, R. P.; Tobias, R. S. Spectrochim.
Acta, P

the polarized Raman band at 930 cm^{-1} is assigned to the $SO(H)$ stretching mode as are the IR bands in $CF₃SO₂OH$ and CF_3SO_2OD at 930 cm⁻¹. For CF_3SO_2F , the analogous mode to SO(H) stretching in CF₃SO₂OH is SF stretching which is assigned to the polarized Raman band at 829 cm^{-1} .

For a CF_3 group of local C_{3v} symmetry, the degenerate CF_3 deformation and CF_3 rocking modes remain. The regions expected for these weak depolarized bands are 5 15-560 and 215-310 cm⁻¹, respectively.^{32a,c,37} The depolarized bands at 564 and 570 cm⁻¹ in CF_3SO_2F and CF_3SO_2OH , respectively, are assigned to the degenerate CF_3 deformation. The only weak depolarized Raman bands near the expected range of 215-310 cm⁻¹, at 196 and 201 cm⁻¹ in CF₃SO₂F and CF₃S- $O₂OH$, respectively, are assigned to the degenerate $CF₃$ rock.

Although the CS stretching mode has been assigned from 450 to 500 cm⁻¹ in several molecules containing CF_3S $groups, ^{32b-e}$ a medium to strong polarized Raman band near 325 cm⁻¹ has been assigned to $v(CS)$ in $CF_3SF_5^{32a}$ and the $CF₃SO₃$ ion.^{33,34} The normal-coordinate analyses of the $CF₃SO₃⁻$ ion by MDCT³³ and BBB³⁴ both show this mode to have significant CF_3 and SO_3 deformation contributions. The second most intense bands, both polarized, in the Raman spectra at 301 and 312 cm⁻¹ for CF_3SO_2F and CF_3SO_2OH , respectively, are labeled as the CS stretching mode. However, in spite of the fact that we label a band as CS stretching, we believe that the mode responsible for the strong polarized Raman bands near 310 cm^{-1} is a more complex motion.³⁸

The four bands remaining unassigned for each compound must be due to five remaining modes of an XSO_2Y system. These may be classified as follows under C_s symmetry:³⁹ XSY deformation (A') , SO_2 bend (A') , SO_2 twist (A'') , SO_2 rock (A'') , and SO_2 wag (A') . An alternative description,⁴⁰ which we will adopt, is to use **SX** wag (A') and SY wag **(A')** rather than XSY deformation (A') and SO_2 wag (A') . In either description under C_s symmetry, there will be three polarized (A') modes and two depolarized **(A")** modes. The fact that three of the four observed bands appear to be depolarized is an anomaly. However, the data for CF_3SO_2F suggest an explanation. The four frequencies and their depolarization ratios are: 611 cm⁻¹ and 0.23, 488 cm⁻¹ and 0.83, 463 cm⁻¹ and 0.92, and 333 cm^{-1} and 0.71. Taking the apparently depolarized band with the lowest depolarization ratio as being an overlap of a weakly polarized and a depolarized pair of bands gives a fifth frequency. An alternative possibility is that the band corresponding to one of the depolarized modes is too weak to observe. In either case, the observed band with the next lowest depolarization ratio is taken as weakly polarized. For CF_3SO_2F the following list results: 611 cm⁻¹ (p), 488 cm⁻¹ (wp), 463 cm⁻¹ (dp), 333 cm⁻¹ (wp). The fifth frequency is either not observed or is 333 cm⁻¹ (dp).

Assignments for these five frequencies are made to be consistent with the following XSO_2Y cases: FSO_2F , 39,41

- Toyuki, H.; Shimizu, **K.** *Bull. Chem.* Soc. *Jpn.* **1966, 39, 2364.**
- Gillespie, R. J.; Robinson, E. **A.** *Spectrochim. Acta* **1962,** *18,* **1473.**
- Gillespie, **R.** J.; Robinson, E. **A.** *Can. J. Chem.* **1961, 39, 2171.**

FSO₂OH,²⁷ HOSO₂OH,^{27a} DOSO₂OD,^{27a} FSO₂Cl,^{39,40} $\mathrm{HOSO_2Cl},^{27}$ $\mathrm{FSO_2Br},^{41}$ $\mathrm{CISO_2Cl},^{39,41}$ $\mathrm{FSO_2OF},^{3,42}$ $\mathrm{FSO_2O-}$ Cl ,^{3,42} FSO₂OBr,³ and FSO₂OI.³ For the two depolarized modes, the SO₂ rock has been assigned to a higher frequency than the SO₂ twist in all cases. Consequently, we assign 463 $cm⁻¹$ as the $SO₂$ rock, and the $SO₂$ twist either is not observed or is 333 cm⁻¹. For FSO_2Y compounds with $\text{Y} = \text{OH}^{27a,b,42}$ Cl,^{39,40} Br,⁴¹ OF,^{3,42} OCl,^{3,42} OBr,³ and OI,³ the SF wag has been assigned in the range $308-500$ cm⁻¹ with all but two in the range $385-500$ cm⁻¹. Consequently, we assign 488 cm⁻¹ as the SF wag. For these same FSO₂Y cases, the SO₂ bend has always been assigned as the highest of the five XSO_2Y system frequencies and in the range $555-627$ cm⁻¹. Consequently, we assign the SO₂ bend to the polarized band at 611 cm^{-1} . The remaining weakly polarized band at 333 cm⁻¹ is assigned to the SCF_3 wag consistent with the SCF_3 wag in CF_3SF_5 being assigned at 320 cm⁻¹.^{32a} If these assignments are extended to the analogous bands for $CF₃SO₂OH$ with the SF wag in CF_3SO_2F becoming an SO(H) wag in CF_3SO_2OH , the summary shown in Table I1 can be made for all the bands below 1500 $cm^{-1.43}$ No bands assignable to the CF₃ torsion were observed.

Our data and assignments for CF_3SO_2OH are of particular interest due to the discrepancy between the results of Miles, Doyle, Cooney, and Tobias³³ (MDCT) for Na[CF₃SO₃] and $Ba[CF₃SO₃]$ ₂ and Burger, Burczyk, and Blaschette³⁴ (BBB) for $Ag[CF_3SO_3]$. Although both groups report strong IR bands in the $630-650$ -cm⁻¹ range for the three solid salts, BBB observe a strong polarized Raman band at 635 cm^{-1} in aqueous $Ag[CF₃SO₃]$ but MDCT do not report any Raman bands between 600 and 700 cm⁻¹ for aqueous $Na[CF_3SO_3]$ and $Ba[CF₃SO₃]$ ₂. Consequently, BBB and MDCT are led to make different assignments for the CF_3 and SO_3 deformations. Both groups support their results by adopting analogous conflicting assignments for $CCl₃SO₃$ salts.

On the basis of our $CF₃SO₂OH$ assignments, the BBB assignments for the SO_3 and CF_3 deformations of the $CF_3SO_3^$ ion are strongly favored.⁴⁵ Table III presents our assignments for CF_3SO_2OH and the $CF_3SO_3^-$ and $CCl_3SO_6^-$ and $CCl_3SO_3^$ salt data of BBB and MDCT. For $CF_3SO_3^-$ and $CCl_3SO_3^$ salts we retain the assignments of BBB except for a reversal of $\nu_{d}(SO_{3})$ and $\nu_{d}(CF_{3})$ for $CF_{3}SO_{3}^{-0.46}$ The changes in as-

(45) Lowering the C_{3v} symmetry of the SO_3 segment of the $CF_3SO_3^-$ ion to the C_s symmetry of CF_3SO_2OH as an XSO_2Y structure changes the single A_1 mode $[\delta_s(SO_3)]$ and two E modes $[\delta_d(SO_3)]$ and $\rho(SO_3)]$ into three A' modes [SO₂ bend, SO(H) wag, and SCF₃ wag] and two A' modes *[SO2* rock and *SO2* twist]. Reference to Table 111 shows the following association between the CF₃SO₃⁻ ion assignments of BBB and ours for CF₃SO₂OH: δ₈(SO₃) at 635^{cm-1} with δ(SO₂ bend) at 620 cm-I, **&(SOs)** at **⁵²¹**cm-' with a small splitting (incompletely resolved, see Figure le) into 6(SO(H) wag) at **⁴⁹⁹**cm-' and **6(S02** rock) at **⁴⁷⁸** cm⁻¹, $\rho(SO_3)$ at **359** cm⁻¹ with $\delta(SCF_3$ wag) (and possibly $\delta(SO_2$ twist)) at **340** cm⁻¹. Also 570 cm⁻¹ as $\delta_d(CF_3)$ in CF₃SO₂OH, with local C_{3v} symmetry for the CF_3 group, agrees well with 582 cm^{-1} in the $CF_3SO_3^$ ion.

⁽a) Burger, **H.;** Cichon, **J.;** Demuth, R.; Grobe, **J.** *Spectrochim. Acta, Part A* 1973, 29, 943 (CF₃SH, CF₃SD, CF₃SeH, CF₃SeD). (b) Burger,
H.; Eujen, R. *Ibid.* 1975, 31, 1645 (CF₃GeX₃, X = F, Cl, Br, I). (c)
Wahi, P. K.; Patel, N. D. *Can. J. Spectrosc.* 1977, 22, 88 (CF₃SeH, CF₃SeD).

⁽³⁸⁾ It is reasonable that the mode responsible for these bands involves CS stretching, CF₃ deformation, and possibly some kind of SO₂X defor-
mation motion in analogy to the result of BBB³⁴ for CF₃SO₃⁻. It is probably true that there is no normal mode in these compounds that is
a CS stretching group frequency in the sense of having 66% or more contribution to the calculated frequency from one diagonal force constant.³⁶

Qureshi, **A.** M.; Levchuk, L. E.; Aubke, F. *Can. J. Chem.* **1971,** *49,* **2544.**

⁽⁴³⁾ Alternate notation for some of the modes is possible. Our $\delta(SO_2 \text{ bend})$ would be called $\delta(SO_2$ scissors) by some authors. Our $\delta(SO_2)$ rock is a motion in the *SOz* plane using the convention of Morino and Shimanouchi.⁴⁴ Some authors would call this mode $\delta(SO_2)$ in-plane). In addition coupling effects may be present which would make other descriptions more appropriate for some modes. For the two bands between 300 and 350 cm^{-1} a description suggested by a referee is $\delta(\text{CF}_3-\text{S})$ in-plane) and δ (CF₃-S out-of-plane). In the absence of additional information, we have chosen to retain our description of δ (SCF₃ wag) and *v*(CS) with proper qualification of the latter.³⁸ However, the nature of the modes responsible for the bands between **300** and **350** cm-l must remain uncertain.

Morino, **Y.;** Shimanouchi, T. *Pure Appl. Chem.* **1978,** *50,* **1707.**

Chlorine and Bromine Trifluoromethanesulfonates

signment for the data of MDCT do avoid some of the disturbingly high depolarization ratios for overlapping A₁ and E modes in the original assignments of MDCT. 47 We offer Table **I11** as the most reasonable and consistent accounting of the data presently available for CF_3SO_2OH and the CF_{3-} SO_3^- and $CCl_3SO_3^-$ salts.

 $CF₃SO₂OCl.$ The Raman spectrum of liquid $CF₃SO₂OCl$ is far more complex than that of CF_3SO_2F or CF_3SO_2OH (Figure 1). The number of bands which are definitely polarized rules out all but C_1 symmetry overall. The complexity of the spectrum of CF_3SO_2OCl compared to CF_3SO_2OH is due to reducing the local C_{3v} symmetry of the CF_3 group to either C_s or C_1 in addition to the OC1 stretch falling within the $0-1500$ -cm⁻¹ region and the OC1 torsion possibly being observable. Frequency, relative intensity, and polarization data are presented in Table I along with the proposed assignment based on C_1 symmetry overall but local C_5 symmetry for the $CF₃$ group. These assignments were made by analogy to $CF₃SO₂OH$ and $CF₃SO₂F$ for many of the modes and $FSO₂OC1^{3,42}$ for the modes involving the SOCl fragment.

The frequency region $725-1500$ cm⁻¹ should contain three CF stretching modes, two SO_2 stretches, the SO(Cl) stretch, and the symmetric CF_3 deformation.⁴⁸ The antisymmetric and symmetric SO_2 stretches and symmetric CF_3 deformation are assigned at 1435 and 1241 cm⁻¹ and 771 cm⁻¹, respectively, by analogy to CF_3SO_2OH . The symmetric CF_3 stretch is assigned to the band at 1125 cm⁻¹ by analogy to $CF₃SO₂OH$ (and CF_3SO_2F) and on the basis of the relatively high intensity. The two asymmetric CF_3 stretches are assigned to weak shoulders at \sim 1226 cm⁻¹ on the symmetric SO₂ stretch at 1241 cm⁻¹ and \sim 1139 cm⁻¹ on the symmetric CF₃ stretch at 1125 cm⁻¹. The degenerate antisymmetric CF_3 stretch in **C3,** local symmetry, from which these two modes are split in C_s symmetry, had been assigned to a weak band at \sim 1232 cm^{-1} on the side of the symmetric SO_2 stretch at 1244 cm^{-1} in $CF₃SO₂OH$. The remaining band at 821 cm⁻¹ must be assigned to the $SO(Cl)$ stretch. In $CF₃SO₂OH$ the analogous $SO(H)$ stretch is much higher at 930 cm⁻¹, but in FSO₂OCl the $SO(Cl)$ stretch is at 856 cm^{-1} in satisfactory agreement with 821 cm⁻¹ and of comparable relative intensity and polarization.⁴⁹

(46) Lowering the C_{3v} symmetry of the SO₃ segment of the CF₃SO₃⁻ ion to
the C_s symmetry of the SO₂ group in XSO₂Y splits $\nu_d(SO_3)$ into $\nu_s(SO_2)$
and $\nu_{us}(SO_2)$. Extending to $\nu_d(SO_3)$ in CF₃SO₃ SO_3^- 1193 cm⁻¹, CCl₃SO₃⁻ 1250 cm⁻¹, and CF₃SO₃⁻ 1285 cm⁻¹ using
the Raman data of MDCT for Na[CX₃SO₃]. However, both BBB and
MDCT assign $\nu_q(SO_3) < 1200$ cm⁻¹ and $\nu_q(CF_3) > 1200$ cm⁻¹ in the
C than $\nu_d(CF_3)$ in our Raman spectra, consistent with the 1285-cm⁻¹ band
being more intense than the 1188-cm⁻¹ band in the Raman spectra of MDCT for Na[CF₃SO₃]. Although BBB do list $\nu_d(CF_3) > \nu_d(SO_3)$ in their Table **3,** they have found in their normal-coordinate analysis that either ν_d (CF₃) > ν_d (SO₃) or the reverse is in good agreement with frequencies calculated from two different chemically plausible sets of force constants. We consider that the weight of the evidence presented here favors $v_d(CF_3) < v_d(SO_3)$ for the CF₃SO₃⁻ ion.

(47) The original assignment of MDCT has the following three cases where a single band or a system of two overlapping bands assigned to the overlap for an A₁ mode and an E mode has a disturbingly high depo-
larization ratio: $\delta_s(SO_3)$ and $\delta_d(SO_3)$ at 580 cm⁻¹ with 0.88 in CF₃SO₃⁻;
 $\delta_s(SO_3)$ and $\delta_d(SO_3)$ at 548 cm⁻¹ with 1.08 in CCl₃SO₃⁻ shown in Table 11 does retain the third problem since 829 cm-
 $y(CS)A_1$ and 814 cm⁻¹ is $\nu_d(CC_1)E$. However, the first two difficulties

are removed. In addition the low intensity of the Raman band at 621 cm-l in Na[CCI,SO,] is surprising for its original assignment to v(CS) **by** MDCT but plausible for *6,(S03)* as assigned in Table **111.**

(48) For a CF₃S group of local *C*, symmetry it is reasonable that the symmetric CF₃ tretching, symmetric CF₃ (umbrella) deformation and CS stretching symmetry coordinates may couple strongly to form a com-
plicated normal coordinate as in $CF_3SO_3^{-34.35}$ For CF_3SO_2OCl there is probably no normal mode that is a symmetric CF_3 (umbrella) deformation group frequency. $35,36$

The frequency region 400-725 cm⁻¹ by analogy to CF_3S - $O₂OH$ and FSO₂OCl would contain the OCl stretch, the SO₂ bend and rock, and two CF_3 deformations. The most intense band in the Raman spectrum of $CF₃SO₂OCl$ at 685 cm⁻¹ is assigned to the OCI stretch in good agreement with 706 cm⁻¹ for that mode in FSO_2OCl^{49} The band at 594 cm⁻¹ for CF3S020C1 is assigned to the *SO2* bend. The *SO2* bends in CF_3SO_2F and CF_3SO_2OH are at 611 and 620 cm⁻¹, respectively, and all three bands have similar band shapes. The SO_2 bend in $FSO₂OCl$ is at 573 cm⁻¹ with comparable relative intensity to the 594-cm⁻¹ band of $CF₃SO₂OCl.$

The two CF, deformations, of **A"** and **A'** symmetry in **C,,** are assigned at 569 and 556 cm^{-1} . These two bands have shapes similar to that of the 570-cm⁻¹ band in $CF₃SO₂OH$ assigned to the degenerate CF_3 deformation in C_{3v} local symmetry which would split under C_s symmetry. The fact that the 569-cm-' band appears to be depolarized supports retention of local C_s symmetry by the CF_3 group. The SO_2 rock is assigned to the band at 499 cm⁻¹ in $CF₃SO₂OCl$. The corresponding bands in CF_3SO_2F , CF_3SO_2OH , and FSO_2OCl are at 463 , 478 , and 534 cm^{-1} , respectively. The $499 \text{-} \text{cm}^{-1}$ band of $CF₃SO₂OCl$ and the 534-cm⁻¹ band of $FSO₂OCl$ have comparable relative intensities.

The band for CF_3SO_2OCl at 411 cm⁻¹ is the second most intense band in the Raman spectrum and the most intense band below 500 cm⁻¹. The 411-cm⁻¹ band of $CF₃SO₂OCl$ is assigned to the $SO(Cl)$ wag by analogy to $FSO₂Cl$ where the second most intense band in the Raman spectrum and the most intense band below 500 cm⁻¹ at 363 cm⁻¹ is assigned as the $SO(Cl)$ wag.⁵⁰

Seven bands in the region $0-400$ cm⁻¹ complete the Raman spectrum of liquid CF_3SO_2OCl . The modes remaining to be assigned are the SCF₃ wag, the SO₂ twist, two CF₃ rocks, the CS stretch, the SOCl bend, and the OC1 torsion. Reduction of the local symmetry of the CF_3 group from C_{3v} to C_s splits the degeneracy of the CF_3 rock and may dramatically change the Raman intensity. For CF, groups bonded to sulfur, reduction of local symmetry from C_{3v} to C_s replaces a weak depolarized band in the $215-310$ -cm⁻¹ region^{32a,c,37a} by a medium to very strong polarized band near 300 cm-' and a weak depolarized band near 200 cm^{-1} , 32b,d Thus a CF₃ rock, the SCF, wag, and CS stretch are candidates for the three prominent bands between 300 and 350 cm⁻¹ in the Raman

⁽⁴⁹⁾ In $CF₃SO₂OH \nu(SO)$ and $\nu(OH)$ would be essentially uncoupled. However, as pointed out by a referee, in CF_3SO_2OCl $\nu(SO)$ and $\nu(OCl)$ would probably couple strongly so that the 821- and 685-cm⁻¹ bands would be more accurately described by $\nu_{\text{ss}}(\text{SOC})$ and $\nu_{\text{s}}(\text{SOC})$, rewould be more accurately described by $v_{\text{ad}}(\text{SOC})$ and $v_{\text{a}}(\text{SOC})$, respectively. An analogous situation probably occurs in FSO,OCl. be
(50) A referee has suggested that the 411-cm⁻¹ band in CF3S0-OCl be

assigned to δ (SOC1) rather than δ (SCF₃ wag). The high intensity of the bands at 411 and 363 cm⁻¹ in CF₃SO₂OC1 and FSO₂OC1, respectively, makes such an assignment for CF₃SO₂OC1 and its extension to the FSO₂OX series data of Aubke and DesMarteau³ attractive. We believe the two most intense bands below **500** cm-l in the Raman spectra of the liquid FSO₂OX compounds are most reasonably assigned as the $\delta(SO(X)$ wag) and the $\delta(SOX)$ modes. The frequencies (cm⁻¹) and relative intensities in parentheses for FSO₂OX, where X = F, Cl, or Br, and for CF_3SO_2OCl are as follows (all bands are polarized): FSO_2OF 395 (40), 242 (30); FSO₂OCI 363 (80), 212 (25); FSO₂OBr 317 (100), 175 (40); CF₃SO₂OCl 411 (57), 211 (20). Since the δ(SOX) mode should have the larger extent of X atom motion, its frequency should show the larger percentage decrease with increasing mass of the X atom providing the force constants do not change in such a way as to alter this expected trend. Consequently, the lower frequency band is selected as $\delta(SOX)$ or at least as having the larger contribution from an SOX bending motion. Then the higher frequency band is selected as $\delta(SO(X))$ wag). We recognize that complex coupling effects may be operating here and that the higher frequency band might have a larger SOX bending contribution than the lower frequency band. It is also possible that there is no **mode** which has SOX bending as its major contributor but that the referee's description is closer to the truth than ours. However, with the current state of information we prefer to retain the assignment consistent with the FSO₂OX assignments of Aubke and DesMarteau³ rather than revise the FSO₂OX assignments without results from a normal-coordinate analysis to provide additional insight.

spectrum of liquid $CF₃SO₂OCl$.

The band at 336 cm⁻¹ for CF₃SO₂OCl is assigned to the SCF, wag by analogy to this same assignment for the bands at 333 and 340 cm⁻¹ in CF_3SO_2F and CF_3SO_2OH , respectively.⁴³ The SO_2 twist for $\check{CF}_3\check{SO}_2OCl$ either is too weak to observe or is degenerate with the SCF_3 wag at 336 cm⁻¹. The SO_2 twist in FSO₂OCl is assigned to a weak band at 389 cm⁻¹. The band at 302 cm⁻¹ for CF_3SO_2OCl is assigned to the CS stretch by analogy to CF_3SO_2F and CF_3SO_2OH where the CS stretch is assigned at 301 and 312 cm⁻¹, respectively.^{38,43} Then the band at 321 cm^{-1} in CF_3SO_2OCl can be assigned to the CF_3 rock of A' symmetry for C_s . It would, of course, be possible to reverse our CS stretch and CF_3 rock assignments. The bands are of almost equal intensity (the third and fourth most intense bands in the Raman spectrum) with the 302-cm-' band being slightly more intense and having the lower depolarization ratio. It seems reasonable for the CS stretch, $38,43$ which would be polarized in any case, to have a lower depolarization ratio than the CF_3 rock which is depolarized in C_{3v} local symmetry but becomes polarized under **C,** local symmetry. Consequently, we have chosen this assignment.⁵¹

(51) In CF₃SO₂OCl, coupling could occur among three modes giving bands
between 300 and 350 cm⁻¹ so the situation could be even more complex
than in CF₃SO₂F and CF₃SO₂OH. However, in the absence of further information we prefer to retain our description of δ (SCF₃) and ν (C-S) with proper qualification of the later³⁸ as done in CF₃SO₂F and CF₃S-
O₂OH⁴³ and list the band at 321 cm⁻¹ as a CF₃ rock.

The band at 211 cm⁻¹ in CF_3SO_2OCl seems too intense for a CF_3 rock of A" symmetry under C_5 local symmetry and is assigned to the SOCl bend.⁵⁰ A band at 212 cm^{-1} with very similar relative intensity is so assigned in FSO₂OCl.⁵⁰ Either the band at 184 cm⁻¹ or the shoulder at \sim 198 cm⁻¹ must be the CF_3 rock. The shoulder on the Rayleigh line near 90 cm⁻¹ must surely be a torsion. Since no evidence for a band assignable to the CF, torsion was obtained for $CF₃SO₂F$ or $CF₃SO₂OH$, we assume the $CF₃$ torsion is too weak to observe and assign 90 cm^{-1} as the OC1 torsion. Although no OC1 torsion has been found in FSO₂OCl, an OF torsion is assigned at 137 cm⁻¹ in $\text{FSO}_2\text{OF}^{3,42}$. Since the 184-cm⁻¹ band is near twice 90 cm⁻¹ and $\Delta v = 2$ transitions for torsions may be more prominent than $\Delta \nu = 1$ transitions,⁵² we tentatively assign the 184-cm⁻¹ band as 2 τ_{OCl} . Then the shoulder near 198 cm⁻¹ remains to be assigned to the CF_3 rock of A" symmetry for local C_s symmetry of the CF₃ group in CF₃SO₂OCl.

Acknowledgment. Support of this research by the National Science Foundation is gratefully acknowledged. D.D.D. thanks the 3M Co. for a generous sample of CF_3SO_2F .

Registry No. CF₃SO₂OCI, 65597-24-2; CF₃SO₂OBr, 70142-16-4; CF3SO*OCF3,3582-05-6; CFpS020SO20CF3,72214-10-9; CF,S02F, **335-05-7; CFySOzOH, 1493-13-6.**

Contribution from the Chemical Research Institute of Nonaqueous Solutions, Tohoku University, Katahira, Sendai 980, Japan

Infrared and Raman Spectra of Ammonium, Potassium, Rubidium, and Cesium Metavanadates

SHINJI ONODERA and YUSAKU IKEGAMI*

Received August *31, I979*

The infrared and Raman spectra of five metavanadates, MVO₃ (M = NH₄, ND₄, K, Rb, Cs), have been measured. The observed bands for KVO₃ in the aqueous solution were assigned to the vibrations of the $(VO_3)_n^{\text{th}}$ ionic chain with C_2 symmetry. **The vibrational assignments to the chain in the crystalline salts were given tentatively by taking into consideration a different arrangement of atoms in the chain from that in aqueous solution. The internal vibrations of the ammonium ions in NH4V03 and ND4V03 at 77 and 100 K were also discussed. The rule of alternative inhibition has been adapted to the librations of the ammonium ions at 77 IC**

In the previous paper,¹ the far-infrared spectra of five metavanadates, MVO_3 (M = NH₄, ND₄, K, Rb, Cs), were reported with the discussions concerning the bending vibrations of the VO_3 anion chain, the cation translations, and the NH_4^+ librations. It was suggested that these salts have similar force constants for the translational modes of the cations. According to the X-ray analyses of $NH₄VO₃$ and $KVO₃$ ² the unit cell in a crystal with space group *Pmab-D_{2h}*¹¹ contains four MVO₃ molecules including four equivalent cations, and the $VO₃$ anions constitute a chain arrangement in which the $VO₄$ groups are tetrahedral. Few vibrational studies for the anion chain are found in the literature. $3,4$

In order to investigate the fundamental vibrations of the anion chain, we measured the infrared and Raman spectra of the powdered salts at room temperature. Since the stereochemical structure of the $VO₄$ tetrahedral chain in aqueous solution has been assumed to be different from that in crystal, 5 the spectra of the aqueous solution were also examined for KVO,, which is soluble in water. This paper deals with the assignments for these observed bands. Internal motions and librations of the ammonium ions are also discussed for the spectra of NH_4VO_3 and ND_4VO_3 measured at room and low temperatures.

Experimental Section

The materials measured were NH₄VO₃, ND₄VO₃, KVO₃, RbVO₃, and CsVO₃, all of which were prepared as previously reported.¹ Infrared spectra were measured with a Perkin-Elmer Model 125 (1) Onodera, S.; Ikegami, Y. *Inorg. Chem.* 1979, 18, 466.
(2) Evans, H. T., Jr. Z. Kristallogr., Kristallgeom., Kristallphys., Kris-
[2] Infrared spectra were measured with a Perkin-Elmer Model 125

^{(52) (}a) Durig, J. R.; Bucy, W. E.; Carreira, L. A.; Wurrey, C. J. J. Chem.
Phys. 1974, 60, 1754. (b) Durig, J. R.; Bucy, W. E.; Wurrey, C. J. J.
Chem. Phys. 1974, 60, 3293. (c) Durig, J. R.; Bucy, W. E.; Wurrey, C. J. Z.

tallchem. **1960,** *114,* **257.**

⁽³⁾ Frederickson, L. D., Jr.; Hausen, D. M. Anal. Chem. 1963, 35, 818.
(4) Griffith, W. P.; Wickins, T. D. J. Chem. Soc. A 1966, 1087. Griffith, (5) Wells, A. F. "Structural Inorganic Chemistry", 4th ed.; Clarendon W. P. I **Press: Oxford, 1975; p 470.**